Spaces:
Sleeping
Sleeping
File size: 10,515 Bytes
891c45c a0d76d8 891c45c a0d76d8 891c45c a0d76d8 891c45c a0d76d8 891c45c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import asyncio
import json
import gradio as gr
from openai import AsyncOpenAI, OpenAI
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Configuration
XAI_API_KEY = os.getenv("XAI_API_KEY")
client = AsyncOpenAI(
api_key=XAI_API_KEY,
base_url="https://api.x.ai/v1",
)
simple_client = OpenAI(
api_key=XAI_API_KEY,
base_url="https://api.x.ai/v1",
)
# Load agent personalities
with open('data/agent_bank.json', 'r') as f:
AGENT_BANK = json.load(f)['agents']
class MultiAgentConversationalSystem:
def __init__(self, api_client):
self.client = api_client
self.agents = AGENT_BANK
self.first_stage_results = []
self.conversation_histories = {}
self.manager_agent = {
"first_name": "Alex",
"last_name": "Policymaker",
"expertise": "Policy Strategy and Synthesis",
"personality": "Strategic, analytical, and focused on comprehensive understanding"
}
async def first_stage_analysis(self, policy):
"""First stage: Agents analyze policy and provide reasoning with yes/no answer"""
async def agent_policy_analysis(agent):
agent_context = "\n".join([
f"{key}: {value}" for key, value in agent.items()
])
prompt = f"""
Agent Profile:
{agent_context}
Policy/Topic: {policy}
Task:
1. Carefully analyze the policy/topic using ALL aspects of your defined personality and expertise.
2. Provide a clear YES or NO answer.
3. Explain your reasoning in 2-3 detailed paragraphs.
4. Leverage every aspect of your defined characteristics to provide a comprehensive analysis.
Format your response as:
- Agent: {agent['first_name']} {agent['last_name']}
- Answer: YES/NO
- Reasoning: [Detailed explanation drawing from ALL your defined attributes]
"""
try:
response = await self.client.chat.completions.create(
model="grok-2-1212",
messages=[{"role": "user", "content": prompt}]
)
agent_response = {
"full_name": f"{agent['first_name']} {agent['last_name']}",
"expertise": agent['expertise'],
"full_agent_context": agent,
"full_response": response.choices[0].message.content
}
return agent_response
except Exception as e:
return {
"full_name": f"{agent['first_name']} {agent['last_name']}",
"full_agent_context": agent,
"full_response": f"Error: {str(e)}"
}
tasks = [agent_policy_analysis(agent) for agent in self.agents]
self.first_stage_results = await asyncio.gather(*tasks)
# {chr(10).join([f"- {result['full_name']}: {result['full_response'].split('Reasoning:')[1].strip()}" for result in self.first_stage_results])}
summary_prompt = f"""
Policy/Topic: {policy}
Agent Analyses Summary:
{self.first_stage_results}
Your Task:
1. Synthesize the diverse agent perspectives into a comprehensive policy overview.
2. Identify key insights, potential challenges, and strategic recommendations.
3. Provide a balanced and strategic assessment of the policy.
"""
manager_name = f"{self.manager_agent['first_name']} {self.manager_agent['last_name']}"
self.conversation_histories[manager_name] = [
{"role": "system", "content": f"""
You are {manager_name}, a strategic policy analyst with expertise in {self.manager_agent['expertise']}.
You synthesize complex perspectives and provide strategic policy insights.
Initial Policy Summary:
{summary_prompt}
"""}
]
return self.first_stage_results
async def manager_summary(self, policy):
try:
response = await self.client.chat.completions.create(
model="grok-2-1212",
messages=[{"role": "user", "content": f"""Summarized this.\n\n{policy}"""}],
stream=False
)
manager_summary = response.choices[0].message.content
return manager_summary
except Exception as e:
return f"Summary generation error: {str(e)}"
async def agent_conversation(self, agent_name, message, history):
if agent_name not in self.conversation_histories:
agent_context = next((agent for agent in self.first_stage_results
if f"{agent['full_agent_context']['first_name']} {agent['full_agent_context']['last_name']}" == agent_name),
None)
if not agent_context:
return "Agent not found."
self.conversation_histories[agent_name] = [
{"role": "system", "content": f"""
You are {agent_name}, an agent with the following profile:
Expertise: {agent_context['expertise']}
Approach the conversation from your unique perspective,
drawing on your expertise and personality.
"""}
]
conversation_history = self.conversation_histories[agent_name].copy()
conversation_history.append({"role": "user", "content": message})
try:
response = await self.client.chat.completions.create(
model="grok-2-1212",
messages=conversation_history,
stream=True
)
agent_response = response.choices[0].message.content
self.conversation_histories[agent_name].append(
{"role": "user", "content": message}
)
self.conversation_histories[agent_name].append(
{"role": "assistant", "content": agent_response}
)
return agent_response
except Exception as e:
return f"Conversation error: {str(e)}"
# Chat
def predict(message, history, policy_summary):
system_prompt = """\
You are an assistant, that work as a Policymaker. Expertise in Policy Strategy and Synthesis.
With a personality of Strategic, analytical, and focused on comprehensive understanding.
"""
policy_summary_prompt = f"""\
Here are the policy summary of professtional role in the country.
{policy_summary}
"""
history_openai_format = [{"role": "system", "content": system_prompt}]
history_openai_format.append({"role": "user", "content": policy_summary_prompt})
for human, assistant in history:
if isinstance(human, str) and human.strip():
history_openai_format.append({"role": "user", "content": human})
if isinstance(assistant, str) and assistant.strip():
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
print("history_openai_format:", history_openai_format)
response = simple_client.chat.completions.create(
model='grok-2-1212',
messages=history_openai_format,
temperature=0.6,
stream=True
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message += chunk.choices[0].delta.content
yield partial_message
def chat_bot(user_input, history, policy_summary):
bot_response_generator = predict(user_input, history, policy_summary)
history.append((user_input, ""))
for bot_response in bot_response_generator:
history[-1] = (user_input, bot_response)
yield "", history
def create_gradio_interface():
multi_agent_system = MultiAgentConversationalSystem(client)
def get_manager_summary(policy):
summary = asyncio.run(multi_agent_system.manager_summary(policy))
return summary
def agent_chat(agent_name, message, history, summary_policy):
response = asyncio.run(multi_agent_system.agent_conversation(agent_name, message, history, summary_policy))
history.append((message, response))
return "", history
def first_stage_process(policy):
gr.Info("Running Agent Parallel Please Wait....")
results = asyncio.run(multi_agent_system.first_stage_analysis(policy))
formatted_output = "π First Stage: Agent Policy Analyses\n\n"
for result in results:
formatted_output += f"**{result['full_name']}:**\n{result['full_response']}\n\n{'='*50}\n\n"
gr.Info("Running Agent Done!")
return formatted_output
with gr.Blocks() as demo:
gr.Markdown("# π Two-Stage Multi-Agent Policy Analysis")
with gr.Tab("First Stage: Policy Analysis"):
policy_input = gr.Textbox(label="Policy/Topic")
first_stage_btn = gr.Button("Analyze Policy")
policy_summary = gr.Markdown(label="Agent Perspectives")
first_stage_btn.click(
fn=first_stage_process,
inputs=policy_input,
outputs=[policy_summary]
)
with gr.Tab("Second Stage: Chat with Policy Maker"):
chatbot = gr.Chatbot(elem_id="chatbot")
msg = gr.Textbox(placeholder="Put your message here...")
with gr.Row():
clear = gr.Button("Clear History")
send = gr.Button("Send Message", variant="primary")
gr.Examples(
examples=[
"Should I implement this?",
"Can you recommend what should i do?",
],
inputs=msg,
)
clear.click(lambda: [], [], chatbot)
msg.submit(chat_bot, [msg, chatbot, policy_summary], [msg, chatbot])
send.click(chat_bot, [msg, chatbot, policy_summary], [msg, chatbot])
return demo
def main():
app = create_gradio_interface()
app.launch()
if __name__ == "__main__":
main()
|