sakuexe commited on
Commit
6427fd5
·
1 Parent(s): d01acd5

added debug prints

Browse files
Files changed (1) hide show
  1. app.py +10 -4
app.py CHANGED
@@ -40,7 +40,7 @@ MODEL_NAME = "google/gemma-2-2b-it"
40
  model = AutoModelForCausalLM.from_pretrained(
41
  MODEL_NAME,
42
  # quantization_config=bnb_config,
43
- device_map="auto",
44
  torch_dtype=torch.bfloat16
45
  )
46
 
@@ -100,14 +100,18 @@ def generate_prompt(message_history: list[ChatMessage], max_history=5):
100
 
101
  async def generate_answer(message_history: list[ChatMessage]):
102
  # generate a vector store
 
103
  db = await get_document_database("learning_material/*/*/*")
 
104
 
105
  # initialize the similarity search
106
  n_of_best_results = 4
107
  retriever = db.as_retriever(
108
  search_type="similarity", search_kwargs={"k": n_of_best_results})
109
 
 
110
  prompt = generate_prompt(message_history, max_history=5)
 
111
 
112
  # create the pipeline for generating a response
113
  # RunnablePassthrough handles the invoke parameters
@@ -120,11 +124,13 @@ async def generate_answer(message_history: list[ChatMessage]):
120
 
121
  # fetch the context using the latest message as the fetch string
122
  user_input = message_history[-1]["content"]
 
123
  response = retrieval_chain.invoke(user_input)
 
124
 
125
- # # debugging
126
- # print("=====raw response=====")
127
- # print(response)
128
 
129
  # get the next response from the AI
130
  # first parse until the last user input and then get the first response
 
40
  model = AutoModelForCausalLM.from_pretrained(
41
  MODEL_NAME,
42
  # quantization_config=bnb_config,
43
+ # device_map="cpu",
44
  torch_dtype=torch.bfloat16
45
  )
46
 
 
100
 
101
  async def generate_answer(message_history: list[ChatMessage]):
102
  # generate a vector store
103
+ print("creating the document database")
104
  db = await get_document_database("learning_material/*/*/*")
105
+ print("Document database is ready")
106
 
107
  # initialize the similarity search
108
  n_of_best_results = 4
109
  retriever = db.as_retriever(
110
  search_type="similarity", search_kwargs={"k": n_of_best_results})
111
 
112
+ print("generating prompt")
113
  prompt = generate_prompt(message_history, max_history=5)
114
+ print("prompt is ready")
115
 
116
  # create the pipeline for generating a response
117
  # RunnablePassthrough handles the invoke parameters
 
124
 
125
  # fetch the context using the latest message as the fetch string
126
  user_input = message_history[-1]["content"]
127
+ print("invoking")
128
  response = retrieval_chain.invoke(user_input)
129
+ print("response recieved from invoke")
130
 
131
+ # debugging
132
+ print("=====raw response=====")
133
+ print(response)
134
 
135
  # get the next response from the AI
136
  # first parse until the last user input and then get the first response