Spaces:
Sleeping
Sleeping
Merge pull request #32 from eliawaefler/ingest
Browse files- .gitignore +2 -2
- backend/generate_metadata.py +99 -34
- flake.nix +1 -0
- ingest.py +7 -0
.gitignore
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
.envrc
|
2 |
.direnv/
|
3 |
-
*.lock
|
4 |
.env
|
5 |
.venv
|
6 |
.ipynb_checkpoints
|
7 |
-
|
|
|
|
1 |
.envrc
|
2 |
.direnv/
|
|
|
3 |
.env
|
4 |
.venv
|
5 |
.ipynb_checkpoints
|
6 |
+
flake.nix
|
7 |
+
*__pycache__*
|
backend/generate_metadata.py
CHANGED
@@ -1,43 +1,108 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import json
|
3 |
import openai
|
|
|
4 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
from schema import Metadata, BimDiscipline
|
7 |
|
8 |
load_dotenv()
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
import argparse
|
4 |
import json
|
5 |
import openai
|
6 |
+
|
7 |
from dotenv import load_dotenv
|
8 |
+
from langchain_community.document_loaders import TextLoader
|
9 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
10 |
+
from langchain_community.embeddings.fake import FakeEmbeddings
|
11 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
12 |
+
|
13 |
+
from langchain_community.vectorstores import Vectara
|
14 |
|
15 |
from schema import Metadata, BimDiscipline
|
16 |
|
17 |
load_dotenv()
|
18 |
|
19 |
+
vectara_customer_id = os.environ['VECTARA_CUSTOMER_ID']
|
20 |
+
vectara_corpus_id = os.environ['VECTARA_CORPUS_ID']
|
21 |
+
vectara_api_key = os.environ['VECTARA_API_KEY']
|
22 |
+
|
23 |
+
vectorstore = Vectara(vectara_customer_id=vectara_customer_id,
|
24 |
+
vectara_corpus_id=vectara_corpus_id,
|
25 |
+
vectara_api_key=vectara_api_key)
|
26 |
+
|
27 |
+
|
28 |
+
def ingest(file_path):
|
29 |
+
extension = file_path.split('.')[-1]
|
30 |
+
ext = extension.lower()
|
31 |
+
if ext == 'pdf':
|
32 |
+
loader = UnstructuredPDFLoader(file_path)
|
33 |
+
elif ext == 'txt':
|
34 |
+
loader = TextLoader(file_path)
|
35 |
+
else:
|
36 |
+
raise NotImplementedError('Only .txt or .pdf files are supported')
|
37 |
+
|
38 |
+
# transform locally
|
39 |
+
documents = loader.load()
|
40 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0,
|
41 |
+
separators=[
|
42 |
+
"\n\n",
|
43 |
+
"\n",
|
44 |
+
" ",
|
45 |
+
",",
|
46 |
+
"\uff0c", # Fullwidth comma
|
47 |
+
"\u3001", # Ideographic comma
|
48 |
+
"\uff0e", # Fullwidth full stop
|
49 |
+
# "\u200B", # Zero-width space (Asian languages)
|
50 |
+
# "\u3002", # Ideographic full stop (Asian languages)
|
51 |
+
"",
|
52 |
+
])
|
53 |
+
docs = text_splitter.split_documents(documents)
|
54 |
+
#print(docs)
|
55 |
+
|
56 |
+
return docs
|
57 |
+
|
58 |
+
|
59 |
+
# vectara = Vectara.from_documents(docs, embedding=FakeEmbeddings(size=768))
|
60 |
+
# retriever = vectara.as_retriever()
|
61 |
+
|
62 |
+
# return retriever
|
63 |
+
|
64 |
+
|
65 |
+
def extract_metadata(docs):
|
66 |
+
# plain text
|
67 |
+
context = "".join(
|
68 |
+
[doc.page_content.replace('\n\n','').replace('..','') for doc in docs])
|
69 |
+
|
70 |
+
# Create client
|
71 |
+
client = openai.OpenAI(
|
72 |
+
base_url="https://api.together.xyz/v1",
|
73 |
+
api_key=os.environ["TOGETHER_API_KEY"],
|
74 |
+
)
|
75 |
+
|
76 |
+
# Call the LLM with the JSON schema
|
77 |
+
chat_completion = client.chat.completions.create(
|
78 |
+
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
79 |
+
response_format={"type": "json_object", "schema": Metadata.model_json_schema()},
|
80 |
+
messages=[
|
81 |
+
{
|
82 |
+
"role": "system",
|
83 |
+
"content": f"You are a helpful assistant that understands BIM documents and engineering disciplines. Your answer should be in JSON format and only include the title, a brief one-sentence summary, and the discipline the document belongs to, distinguishing between {[d.value for d in BimDiscipline]} based on the given document."
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"role": "user",
|
87 |
+
"content": f"Analyze the provided document, which could be in either German or English. Extract the title, summarize it briefly in one sentence, and infer the discipline. Document:\n{context}"
|
88 |
+
}
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
created_user = json.loads(chat_completion.choices[0].message.content)
|
93 |
+
return created_user
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
parser = argparse.ArgumentParser(description="Generate metadata for a BIM document")
|
97 |
+
parser.add_argument("document", metavar="FILEPATH", type=str,
|
98 |
+
help="Path to the BIM document")
|
99 |
+
|
100 |
+
args = parser.parse_args()
|
101 |
+
|
102 |
+
if not os.path.exists(args.document) or not os.path.isfile(args.document):
|
103 |
+
print("File '{}' not found or not accessible.".format(args.document))
|
104 |
+
sys.exit(-1)
|
105 |
+
|
106 |
+
docs = ingest(args.document)
|
107 |
+
metadata = extract_metadata(docs)
|
108 |
+
print(json.dumps(metadata, indent=2))
|
flake.nix
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/home/salgadev/code/dev-flakes/templates/langchain-rag/flake.nix
|
ingest.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
2 |
+
|
3 |
+
def ingest_pdf(path):
|
4 |
+
loader = UnstructuredPDFLoader()
|
5 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
6 |
+
|
7 |
+
return data
|