SANDRAMSC commited on
Commit
bd10bd5
·
unverified ·
2 Parent(s): a616f12 fa2c4b1

Merge pull request #44 from sandramsc/main

Browse files
Files changed (2) hide show
  1. README +141 -0
  2. README.md +13 -3
README ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- PROJECT TITLE -->
2
+ <h1 align="center">DocVerifyRAG: Document Verification and Anomaly Detection</h1>
3
+ <div id="header" align="center">
4
+ </div>
5
+ <h2 align="center">
6
+ Description
7
+ </h2>
8
+ <p align="center"> DocVerifyRAG is a revolutionary tool designed to streamline document verification processes in hospitals. It utilizes AI to classify documents and identify mistakes in metadata, ensuring accurate and efficient document management. Inspired by the need for improved data accuracy in healthcare, DocVerifyRAG provides automated anomaly detection to identify misclassifications and errors in document metadata, enhancing data integrity and compliance with regulatory standards. </p>
9
+
10
+ ## Table of Contents
11
+
12
+ <details>
13
+ <summary>DocVerifyRAG</summary>
14
+
15
+ - [Application Description](#application-description)
16
+ - [Table of Contents](#table-of-contents)
17
+ - [Local installation](#install-locally)
18
+ - [Install using Docker](#install-using-docker)
19
+ - [Usage](#usage)
20
+ - [Contributing](#contributing)
21
+ - [Authors](#authors)
22
+ - [License](#license)
23
+
24
+ </details>
25
+
26
+ ## TRY the prototype
27
+ [DocVerifyRAG](https://docverify-rag.vercel.app)
28
+
29
+ ## Screenshots
30
+
31
+ [Add screenshots here]
32
+
33
+ ## Technology Stack
34
+
35
+ | Technology | Description |
36
+ | ---------- | --------------------------- |
37
+ | AI/ML | Artificial Intelligence and Machine Learning |
38
+ | Python | Programming Language |
39
+ | Flask | Web Framework |
40
+ | Docker | Containerization |
41
+ | Tech Name | Short description |
42
+
43
+ ### Features
44
+
45
+ 1. **Document Classification:**
46
+ - Utilizes AI/ML algorithms to classify documents based on content and metadata.
47
+ - Provides accurate and efficient document categorization for improved data management.
48
+
49
+ 2. **Anomaly Detection:**
50
+ - Identifies mistakes and misclassifications in document metadata through automated anomaly detection.
51
+ - Enhances data integrity and accuracy by flagging discrepancies in document metadata.
52
+
53
+ 3. **User-Friendly Interface:**
54
+ - Offers a user-friendly web interface for easy document upload, classification, and verification.
55
+ - Simplifies the document management process for hospital staff, reducing manual effort and errors.
56
+
57
+ ### Install locally
58
+
59
+ #### Step 1 - Frontend
60
+
61
+ 1. Clone the repository:
62
+ ```bash
63
+ $ git clone https://github.com/eliawaefler/DocVerifyRAG.git
64
+ ```
65
+
66
+ 2. Navigate to the frontend directory:
67
+ ```bash
68
+ $ cd DocVerifyRAG/frontend
69
+ ```
70
+
71
+ 3. Install dependencies:
72
+ ```bash
73
+ $ npm install
74
+ ```
75
+ 4. Run project:
76
+ ```bash
77
+ $ npm run dev
78
+ ```
79
+
80
+ #### Step 2 - Backend
81
+
82
+ 1. Navigate to the backend directory:
83
+ ```bash
84
+ $ cd DocVerifyRAG/backend
85
+ ```
86
+
87
+ 2. Install dependencies:
88
+ ```bash
89
+ $ pip install -r requirements.txt
90
+ ```
91
+
92
+ ### Install using Docker
93
+
94
+ To deploy DocVerifyRAG using Docker, follow these steps:
95
+
96
+ 1. Pull the Docker image from Docker Hub:
97
+
98
+ ```bash
99
+ $ docker pull sandra/docverifyrag:latest
100
+ ```
101
+
102
+ 2. Run the Docker container:
103
+
104
+ ```bash
105
+ $ docker run -d -p 5000:5000 sandramsc/docverifyrag:latest
106
+ ```
107
+
108
+ ### Usage
109
+
110
+ Access the web interface and follow the prompts to upload documents, classify them, and verify metadata. The AI-powered anomaly detection system will automatically flag any discrepancies or errors in the document metadata, providing accurate and reliable document management solutions for hospitals.
111
+
112
+ ### Hugging Face config
113
+
114
+ ---
115
+ title: DocVerifyRAG
116
+ emoji: 🐠
117
+ colorFrom: pink
118
+ colorTo: green
119
+ sdk: streamlit
120
+ sdk_version: 1.27.0
121
+ app_file: app.py
122
+ pinned: false
123
+ ---
124
+
125
+
126
+
127
+
128
+ ## Authors
129
+
130
+ | Name | Link |
131
+ | -------------- | ----------------------------------------- |
132
+ | Sandra Ashipala | [GitHub](https://github.com/sandramsc) |
133
+ | Elia Wäfler | [GitHub](https://github.com/eliawaefler) |
134
+ | Carlos Salgado | [GitHub](https://github.com/salgadev) |
135
+ | Abdul Qadeer | [GitHub](https://github.com/AbdulQadeer-55) |
136
+
137
+ ## License
138
+
139
+ [![GitLicense](https://img.shields.io/badge/License-MIT-lime.svg)](https://github.com/eliawaefler/DocVerifyRAG/blob/main/LICENSE)
140
+ ____
141
+
README.md CHANGED
@@ -1,3 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- PROJECT TITLE -->
2
  <h1 align="center">DocVerifyRAG: Document Verification and Anomaly Detection</h1>
3
  <div id="header" align="center">
@@ -109,7 +121,6 @@ To deploy DocVerifyRAG using Docker, follow these steps:
109
 
110
  Access the web interface and follow the prompts to upload documents, classify them, and verify metadata. The AI-powered anomaly detection system will automatically flag any discrepancies or errors in the document metadata, providing accurate and reliable document management solutions for hospitals.
111
 
112
-
113
  ## Authors
114
 
115
  | Name | Link |
@@ -119,8 +130,7 @@ Access the web interface and follow the prompts to upload documents, classify th
119
  | Carlos Salgado | [GitHub](https://github.com/salgadev) |
120
  | Abdul Qadeer | [GitHub](https://github.com/AbdulQadeer-55) |
121
 
 
122
  ## License
123
 
124
  [![GitLicense](https://img.shields.io/badge/License-MIT-lime.svg)](https://github.com/eliawaefler/DocVerifyRAG/blob/main/LICENSE)
125
- ____
126
-
 
1
+
2
+ ---
3
+ title: DocVerifyRAG
4
+ emoji: 🐠
5
+ colorFrom: pink
6
+ colorTo: green
7
+ sdk: streamlit
8
+ sdk_version: 1.27.0
9
+ app_file: app.py
10
+ pinned: false
11
+ ---
12
+
13
  <!-- PROJECT TITLE -->
14
  <h1 align="center">DocVerifyRAG: Document Verification and Anomaly Detection</h1>
15
  <div id="header" align="center">
 
121
 
122
  Access the web interface and follow the prompts to upload documents, classify them, and verify metadata. The AI-powered anomaly detection system will automatically flag any discrepancies or errors in the document metadata, providing accurate and reliable document management solutions for hospitals.
123
 
 
124
  ## Authors
125
 
126
  | Name | Link |
 
130
  | Carlos Salgado | [GitHub](https://github.com/salgadev) |
131
  | Abdul Qadeer | [GitHub](https://github.com/AbdulQadeer-55) |
132
 
133
+
134
  ## License
135
 
136
  [![GitLicense](https://img.shields.io/badge/License-MIT-lime.svg)](https://github.com/eliawaefler/DocVerifyRAG/blob/main/LICENSE)