import requests from huggingface_hub import from_pretrained_fastai import gradio as gr repo_id = "artificeresearch/spiritvision" learner = from_pretrained_fastai(repo_id) labels = learner.dls.vocab def predict_fn(img): """ :param img: img is a PIL image object :return: prediction and probabilities """ img = img.convert('RGB') # print(f'{max(100 * probs):.2f}% {prediction} - {img}') pred, pred_idx, probs = learner.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(predict_fn, gr.inputs.Image(type='pil', shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch()