import os from huggingface_hub import from_pretrained_fastai from fastai.vision.all import * import gradio as gr import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learner = load_learner('model.pkl') labels = tuple(learner.dls.vocab) def predict_fn(img): pred, pred_idx, probs = learner.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(predict_fn, inputs=gr.components.Image(), outputs=gr.components.Label(num_top_classes=8), examples=['t.jpg', 'tbad.jpg', 'e.jpg', 'ebad.jpg'], ).launch()