Spaces:
Sleeping
Sleeping
File size: 7,346 Bytes
9f1049d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import streamlit as st
import requests
from bs4 import BeautifulSoup
import concurrent.futures
import pandas as pd
from io import BytesIO
from pyxlsb import open_workbook as open_xlsb
if 'df' not in st.session_state:
st.session_state['df'] = None
if 'is_df' not in st.session_state:
st.session_state['is_df'] = False
headers = {
'authority': 'cdn.jwplayer.com',
'accept': '*/*',
'accept-language': 'en-US,en;q=0.5',
'origin': 'https://hotcopper.com.au',
'referer': 'https://hotcopper.com.au/',
'sec-ch-ua': '"Chromium";v="122", "Not(A:Brand";v="24", "Brave";v="122"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'cross-site',
'sec-gpc': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36',
}
cookies = {
'xf_show_post_view': '0',
'xf_threads_terms_conditions_pop': '1',
'hc_user_tracker': 'ZAXlB7LEHd0eT6X4QQfAOFkXms373LrE',
'xf_user': '971779%2C5e49c37ac9fa56c1a2798923703d4978b9f8427d',
'xf_session': '16mn22etenrnkf7aimqacdu026',
}
post_links = []
post_data = {
'username': [],
'number_of_posts_by_user': [],
'number_of_great_analysis_for_user': [],
'post_date': [],
'post_time': [],
'post_id': [],
'number_of_upvotes': [],
'stock_pill': [],
'stock_pill_link': [],
'price_at_posting': [],
'sentiment': [],
'disclosure': [],
'message': [],
'reply_post_id': [],
'reply_post_url': []
}
def get_number_of_posts(company_code, max_page_count=999999999):
url = f'https://hotcopper.com.au/asx/{company_code}/discussion/page-{max_page_count**3}'
response = requests.get(url, headers=headers, cookies=cookies)
number_of_posts = 0
if url != response.url:
number_of_posts = int(response.url.split('-')[-1])
else:
return get_number_of_posts(company_code, max_page_count*3)
return number_of_posts
def get_all_posts(url):
global post_links
response = requests.get(url, headers=headers, cookies=cookies)
soup = BeautifulSoup(response.text, 'html.parser')
posts = [f"https://hotcopper.com.au{post['href']}" for post in soup.find_all('a', class_='subject-a')]
post_links.extend(posts)
return posts
def get_post(url):
response = requests.get(url, headers=headers, cookies=cookies)
soup = BeautifulSoup(response.text, 'html.parser')
username = soup.find('div', class_='user-username').text.strip()
number_of_posts_by_user = soup.find('div', class_='user-post-num').text.replace(',','').replace('Posts.', '').strip()
try:
number_of_great_analysis_for_user = soup.find('div', class_='user-ga-count').text.replace(',','').replace('lightbulb Created with Sketch.','').strip()
except:
number_of_great_analysis_for_user = 0
post_date = soup.find('div', class_='post-metadata-date').text.replace('Posted:','').strip()
post_time = soup.find('div', class_='post-metadata-time').text.replace('Time:', '').strip()
post_id = url.split('=')[-1]
try:
number_of_upvotes = soup.find('div', class_='votes-num has-not-voted').text.strip()
except:
number_of_upvotes = 0
stock_pill = soup.find('span', class_='stock-pill').text.strip()
stock_pill_link = f"https://hotcopper.com.au{soup.find('span', class_='stock-pill').find('a')['href']}"
for meta_detail in soup.find_all('span', class_='meta-details'):
if 'Price at posting:' in meta_detail.text:
price_at_posting = meta_detail.text.replace('Price at posting:', '').strip()
if 'Sentiment:' in meta_detail.text:
sentiment = meta_detail.text.replace('Sentiment:', '').strip()
if 'Disclosure' in meta_detail.text:
disclosure = meta_detail.text.replace('Disclosure:', '').strip()
message = soup.find('blockquote', class_='message-text ugc baseHtml').get_text(strip=True)
if '↑' in message:
message = message.split('↑')[1]
if soup.find('a', class_='AttributionLink') is not None:
reply_post_id = soup.find('a', class_='AttributionLink')['data-hash']
reply_post_url = f"https://hotcopper.com.au/{soup.find('a', class_='AttributionLink')['href']}"
else:
reply_post_id = None
reply_post_url = None
post_data['username'].append(username)
post_data['number_of_posts_by_user'].append(number_of_posts_by_user)
post_data['number_of_great_analysis_for_user'].append(number_of_great_analysis_for_user)
post_data['post_date'].append(post_date)
post_data['post_time'].append(post_time)
post_data['post_id'].append(post_id)
post_data['number_of_upvotes'].append(number_of_upvotes)
post_data['stock_pill'].append(stock_pill)
post_data['stock_pill_link'].append(stock_pill_link)
post_data['price_at_posting'].append(price_at_posting)
post_data['sentiment'].append(sentiment)
post_data['disclosure'].append(disclosure)
post_data['message'].append(message)
post_data['reply_post_id'].append(reply_post_id)
post_data['reply_post_url'].append(reply_post_url)
return post_data
@st.cache_data
def convert_df(df: pd.DataFrame):
return df.to_excel('',index=False, engine='openpyxl', sheet_name='Sheet1')
def to_excel(df):
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index=False, sheet_name='Sheet1')
writer.save()
processed_data = output.getvalue()
return processed_data
def track_progress(futures, total, message):
progress_bar = st.empty()
completed = 0
for future in concurrent.futures.as_completed(futures):
completed += 1
progress_bar.progress(completed / total, f'Scraped {completed}/{total} {message}...')
st.title('Thread Scraper')
st.sidebar.title('Settings')
company_code = st.sidebar.text_input('Company Code', 'ZIP').lower()
scrape = st.sidebar.button('Scrape')
if st.session_state['is_df']:
with st.spinner('Creating database ..'):
df = pd.DataFrame(post_data)
csv = to_excel(df)
st.download_button(
label="Download Data",
data=to_excel(st.session_state['df']),
file_name=f'{company_code.upper()}.xlsx',
mime='application/vnd.ms-excel',
)
if scrape:
with st.spinner('Getting number of post pages to scrape ..'):
number_of_posts = get_number_of_posts(company_code)
with st.spinner('Getting all post links ..'):
pages = [f'https://hotcopper.com.au/asx/{company_code}/discussion/page-{page_number}' for page_number in range(1, get_number_of_posts(company_code)+1)]
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
futures = [executor.submit(get_all_posts, url) for url in pages]
track_progress(futures, len(pages), 'post pages' )
with st.spinner('Getting all post data ..'):
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
futures = [executor.submit(get_post, url) for url in post_links]
track_progress(futures, len(post_links), 'posts')
st.session_state['df'] = pd.DataFrame(post_data)
st.session_state['is_df'] = True
|