File size: 6,342 Bytes
0971cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import {
  createParser,
  ParsedEvent,
  ReconnectInterval,
} from "eventsource-parser";
import { NextRequest, NextResponse } from "next/server";
import {
  ChatCompletionAssistantMessageParam,
  ChatCompletionCreateParamsStreaming,
  ChatCompletionMessageParam,
  ChatCompletionSystemMessageParam,
  ChatCompletionUserMessageParam,
} from "openai/resources/index.mjs";

import { encodeChat, tokenLimit } from "@/lib/token-counter";

const addSystemMessage = (
  messages: ChatCompletionMessageParam[],
  systemPrompt?: string
) => {
  // early exit if system prompt is empty
  if (!systemPrompt || systemPrompt === "") {
    return messages;
  }

  // add system prompt to the chat (if it's not already there)
  // check first message in the chat
  if (!messages) {
    // if there are no messages, add the system prompt as the first message
    messages = [
      {
        content: systemPrompt,
        role: "system",
      },
    ];
  } else if (messages.length === 0) {
    // if there are no messages, add the system prompt as the first message
    messages.push({
      content: systemPrompt,
      role: "system",
    });
  } else {
    // if there are messages, check if the first message is a system prompt
    if (messages[0].role === "system") {
      // if the first message is a system prompt, update it
      messages[0].content = systemPrompt;
    } else {
      // if the first message is not a system prompt, add the system prompt as the first message
      messages.unshift({
        content: systemPrompt,
        role: "system",
      });
    }
  }
  return messages;
};

const formatMessages = (
  messages: ChatCompletionMessageParam[]
): ChatCompletionMessageParam[] => {
  let mappedMessages: ChatCompletionMessageParam[] = [];
  let messagesTokenCounts: number[] = [];
  const responseTokens = 512;
  const tokenLimitRemaining = tokenLimit - responseTokens;
  let tokenCount = 0;

  messages.forEach((m) => {
    if (m.role === "system") {
      mappedMessages.push({
        role: "system",
        content: m.content,
      } as ChatCompletionSystemMessageParam);
    } else if (m.role === "user") {
      mappedMessages.push({
        role: "user",
        content: m.content,
      } as ChatCompletionUserMessageParam);
    } else if (m.role === "assistant") {
      mappedMessages.push({
        role: "assistant",
        content: m.content,
      } as ChatCompletionAssistantMessageParam);
    } else {
      return;
    }

    // ignore typing
    // tslint:disable-next-line
    const messageTokens = encodeChat([m]); 
    messagesTokenCounts.push(messageTokens);
    tokenCount += messageTokens;
  });

  if (tokenCount <= tokenLimitRemaining) {
    return mappedMessages;
  }

  // remove the middle messages until the token count is below the limit
  while (tokenCount > tokenLimitRemaining) {
    const middleMessageIndex = Math.floor(messages.length / 2);
    const middleMessageTokens = messagesTokenCounts[middleMessageIndex];
    mappedMessages.splice(middleMessageIndex, 1);
    messagesTokenCounts.splice(middleMessageIndex, 1);
    tokenCount -= middleMessageTokens;
  }
  return mappedMessages;
};

export async function POST(req: NextRequest): Promise<NextResponse> {
  try {
    const { messages, chatOptions } = await req.json();
    if (!chatOptions.selectedModel || chatOptions.selectedModel === "") {
      throw new Error("Selected model is required");
    }

    const baseUrl = process.env.VLLM_URL;
    if (!baseUrl) {
      throw new Error("VLLM_URL is not set");
    }
    const apiKey = process.env.VLLM_API_KEY;

    const formattedMessages = formatMessages(
      addSystemMessage(messages, chatOptions.systemPrompt)
    );

    const stream = await getOpenAIStream(
      baseUrl,
      chatOptions.selectedModel,
      formattedMessages,
      chatOptions.temperature,
      apiKey,
    );
    return new NextResponse(stream, {
      headers: { "Content-Type": "text/event-stream" },
    });
  } catch (error) {
    console.error(error);
    return NextResponse.json(
      {
        success: false,
        error: error instanceof Error ? error.message : "Unknown error",
      },
      { status: 500 }
    );
  }
}

const getOpenAIStream = async (
  apiUrl: string,
  model: string,
  messages: ChatCompletionMessageParam[],
  temperature?: number,
  apiKey?: string
): Promise<ReadableStream<Uint8Array>> => {
  const encoder = new TextEncoder();
  const decoder = new TextDecoder();
  const headers = new Headers();
  headers.set("Content-Type", "application/json");
  if (apiKey !== undefined) {
    headers.set("Authorization", `Bearer ${apiKey}`);
    headers.set("api-key", apiKey);
  }
  const chatOptions: ChatCompletionCreateParamsStreaming = {
    model: model,
    // frequency_penalty: 0,
    // max_tokens: 2000,
    messages: messages,
    // presence_penalty: 0,
    stream: true,
    temperature: temperature ?? 0.5,
    // response_format: {
    //   type: "json_object",
    // }
    // top_p: 0.95,
  };
  const res = await fetch(apiUrl + "/v1/chat/completions", {
    headers: headers,
    method: "POST",
    body: JSON.stringify(chatOptions),
  });

  if (res.status !== 200) {
    const statusText = res.statusText;
    const responseBody = await res.text();
    console.error(`vLLM API response error: ${responseBody}`);
    throw new Error(
      `The vLLM API has encountered an error with a status code of ${res.status} ${statusText}: ${responseBody}`
    );
  }

  return new ReadableStream({
    async start(controller) {
      const onParse = (event: ParsedEvent | ReconnectInterval) => {
        if (event.type === "event") {
          const data = event.data;

          if (data === "[DONE]") {
            controller.close();
            return;
          }

          try {
            const json = JSON.parse(data);
            const text = json.choices[0].delta.content;
            const queue = encoder.encode(text);
            controller.enqueue(queue);
          } catch (e) {
            controller.error(e);
          }
        }
      };

      const parser = createParser(onParse);

      for await (const chunk of res.body as any) {
        // An extra newline is required to make AzureOpenAI work.
        const str = decoder.decode(chunk).replace("[DONE]\n", "[DONE]\n\n");
        parser.feed(str);
      }
    },
  });
};