sam2ai commited on
Commit
cb34984
·
verified ·
1 Parent(s): e845a58

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -63
app.py CHANGED
@@ -1,64 +1,41 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ # from transformers import AutoModel, AutoTokenizer
4
+
5
+ def load_model(model_link):
6
+ # model = AutoModel.from_pretrained(model_link)
7
+ return "model"
8
+
9
+ def update_config(quantization_type, bits, threshold):
10
+ # Configuration logic here
11
+ return {"quantization": quantization_type, "bits": bits, "threshold": threshold}
12
+
13
+ def run_benchmark(model, config):
14
+ # Benchmarking logic here
15
+ return {"speed": "X ms/token", "memory": "Y GB"}
16
+
17
+ # Create the interface
18
+ with gr.Blocks() as demo:
19
+ with gr.Tab("Model Loading"):
20
+ model_input = gr.Textbox(label="Hugging Face Model Link")
21
+ model_type = gr.Dropdown(choices=["BERT", "GPT", "T5"], label="Model Type")
22
+ load_btn = gr.Button("Load Model")
23
+
24
+ with gr.Tab("Quantization"):
25
+ quant_type = gr.Dropdown(choices=["INT8", "INT4", "FP16"], label="Quantization Type")
26
+ bits = gr.Slider(minimum=4, maximum=8, step=1, label="Bits")
27
+ threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
28
+
29
+ with gr.Tab("Benchmarking"):
30
+ benchmark_btn = gr.Button("Run Benchmark")
31
+ results = gr.JSON(label="Benchmark Results")
32
+
33
+ # Set up event handlers
34
+ load_btn.click(load_model, inputs=[model_input])
35
+ benchmark_btn.click(
36
+ run_benchmark,
37
+ inputs=[model_type, quant_type, bits, threshold],
38
+ outputs=[results]
39
+ )
40
+
41
+ demo.launch()