Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
# from transformers import AutoModel, AutoTokenizer
|
4 |
+
|
5 |
+
def load_model(model_link):
|
6 |
+
# model = AutoModel.from_pretrained(model_link)
|
7 |
+
return "model"
|
8 |
+
|
9 |
+
def update_config(quantization_type, bits, threshold):
|
10 |
+
# Configuration logic here
|
11 |
+
return {"quantization": quantization_type, "bits": bits, "threshold": threshold}
|
12 |
+
|
13 |
+
def run_benchmark(model, config):
|
14 |
+
# Benchmarking logic here
|
15 |
+
return {"speed": "X ms/token", "memory": "Y GB"}
|
16 |
+
|
17 |
+
# Create the interface
|
18 |
+
with gr.Blocks() as demo:
|
19 |
+
with gr.Tab("Model Loading"):
|
20 |
+
model_input = gr.Textbox(label="Hugging Face Model Link")
|
21 |
+
model_type = gr.Dropdown(choices=["BERT", "GPT", "T5"], label="Model Type")
|
22 |
+
load_btn = gr.Button("Load Model")
|
23 |
+
|
24 |
+
with gr.Tab("Quantization"):
|
25 |
+
quant_type = gr.Dropdown(choices=["INT8", "INT4", "FP16"], label="Quantization Type")
|
26 |
+
bits = gr.Slider(minimum=4, maximum=8, step=1, label="Bits")
|
27 |
+
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
28 |
+
|
29 |
+
with gr.Tab("Benchmarking"):
|
30 |
+
benchmark_btn = gr.Button("Run Benchmark")
|
31 |
+
results = gr.JSON(label="Benchmark Results")
|
32 |
+
|
33 |
+
# Set up event handlers
|
34 |
+
load_btn.click(load_model, inputs=[model_input])
|
35 |
+
benchmark_btn.click(
|
36 |
+
run_benchmark,
|
37 |
+
inputs=[model_type, quant_type, bits, threshold],
|
38 |
+
outputs=[results]
|
39 |
+
)
|
40 |
+
|
41 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|