added window sliding (#1)
Browse files- added window sliding (ec7bf1ecd046d97945a306471d5a72eab96a1b0d)
- app.py +3 -106
- image_resizer.py +114 -0
app.py
CHANGED
@@ -1,111 +1,8 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import cv2 as cv
|
4 |
-
import numpy as np
|
5 |
import gradio as gr
|
6 |
-
from
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
backend_target_pairs = [
|
11 |
-
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
12 |
-
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
13 |
-
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
14 |
-
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
15 |
-
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU],
|
16 |
-
]
|
17 |
-
|
18 |
-
|
19 |
-
class ImageResizer:
|
20 |
-
def __init__(
|
21 |
-
self,
|
22 |
-
modelPath,
|
23 |
-
input_size=(320, 320),
|
24 |
-
conf_threshold=0.6,
|
25 |
-
nms_threshold=0.3,
|
26 |
-
top_k=5000,
|
27 |
-
backend_id=0,
|
28 |
-
target_id=0,
|
29 |
-
):
|
30 |
-
self.model = YuNet(
|
31 |
-
modelPath=modelPath,
|
32 |
-
inputSize=input_size,
|
33 |
-
confThreshold=conf_threshold,
|
34 |
-
nmsThreshold=nms_threshold,
|
35 |
-
topK=top_k,
|
36 |
-
backendId=backend_id,
|
37 |
-
targetId=target_id,
|
38 |
-
)
|
39 |
-
|
40 |
-
def detect(self, image, num_faces=None):
|
41 |
-
# If input is an image
|
42 |
-
if image is not None:
|
43 |
-
h, w, _ = image.shape
|
44 |
-
|
45 |
-
# Inference
|
46 |
-
self.model.setInputSize([w, h])
|
47 |
-
results = self.model.infer(image)
|
48 |
-
|
49 |
-
faces = results[:num_faces] if num_faces else results
|
50 |
-
|
51 |
-
bboxs = []
|
52 |
-
|
53 |
-
for face in faces:
|
54 |
-
bbox = face[0:4].astype(np.int32) # x,y,w,h
|
55 |
-
x, y, w, h = bbox
|
56 |
-
# draw
|
57 |
-
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
58 |
-
bboxs.append(bbox)
|
59 |
-
|
60 |
-
return image, bboxs
|
61 |
-
|
62 |
-
def resize(self, image, target_size=512, above_head_ratio=0.5):
|
63 |
-
height, width, _c = image.shape
|
64 |
-
ar = width / height
|
65 |
-
# downscale the image
|
66 |
-
if not target_size:
|
67 |
-
target_size = 512
|
68 |
-
if ar > 1:
|
69 |
-
# Landscape
|
70 |
-
new_height = target_size
|
71 |
-
new_width = int(target_size * ar)
|
72 |
-
elif ar < 1:
|
73 |
-
# Portrait
|
74 |
-
new_width = target_size
|
75 |
-
new_height = int(target_size / ar)
|
76 |
-
else:
|
77 |
-
# Square
|
78 |
-
new_width = target_size
|
79 |
-
new_height = target_size
|
80 |
-
|
81 |
-
resized = cv2.resize(
|
82 |
-
image, (new_width, new_height), interpolation=cv2.INTER_LINEAR
|
83 |
-
)
|
84 |
-
|
85 |
-
# Perform object detection on the resized image
|
86 |
-
dt_image, bboxes = self.detect(resized.copy())
|
87 |
-
|
88 |
-
# crop around face
|
89 |
-
if len(bboxes) >= 1:
|
90 |
-
x, y, w, h = bboxes[0]
|
91 |
-
else:
|
92 |
-
x, y, w, h = 0, 0, target_size, target_size
|
93 |
-
# 20% of image height
|
94 |
-
above_head_max = int(target_size * above_head_ratio)
|
95 |
-
x_center = int((x + (x + w)) / 2)
|
96 |
-
y_center = int((y + (y + h)) / 2)
|
97 |
-
# Calculate cropping box
|
98 |
-
left = int(max(0, x_center - target_size // 2))
|
99 |
-
top = int(max(0, y_center - above_head_max))
|
100 |
-
right = min(left + target_size, resized.shape[1])
|
101 |
-
bottom = min(top + target_size, resized.shape[0])
|
102 |
-
|
103 |
-
cropped_image = resized[top:bottom, left:right]
|
104 |
-
return dt_image, cropped_image
|
105 |
-
|
106 |
-
|
107 |
-
model_path = "face_detection_yunet_2023mar.onnx"
|
108 |
-
image_resizer = ImageResizer(modelPath=model_path)
|
109 |
|
110 |
|
111 |
def face_detector(input_image, target_size=512):
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from image_resizer import ImageResizer
|
3 |
|
4 |
+
MODEL_PATH = "face_detection_yunet_2023mar.onnx"
|
5 |
+
image_resizer = ImageResizer(modelPath=MODEL_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
def face_detector(input_image, target_size=512):
|
image_resizer.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import cv2 as cv
|
3 |
+
import numpy as np
|
4 |
+
from yunet import YuNet
|
5 |
+
|
6 |
+
|
7 |
+
# Valid combinations of backends and targets
|
8 |
+
backend_target_pairs = [
|
9 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
10 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
11 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
12 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
13 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU],
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
class ImageResizer:
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
modelPath,
|
21 |
+
input_size=(320, 320),
|
22 |
+
conf_threshold=0.6,
|
23 |
+
nms_threshold=0.3,
|
24 |
+
top_k=5000,
|
25 |
+
backend_id=0,
|
26 |
+
target_id=0,
|
27 |
+
):
|
28 |
+
self.model = YuNet(
|
29 |
+
modelPath=modelPath,
|
30 |
+
inputSize=input_size,
|
31 |
+
confThreshold=conf_threshold,
|
32 |
+
nmsThreshold=nms_threshold,
|
33 |
+
topK=top_k,
|
34 |
+
backendId=backend_id,
|
35 |
+
targetId=target_id,
|
36 |
+
)
|
37 |
+
|
38 |
+
def detect(self, image, num_faces=None):
|
39 |
+
# If input is an image
|
40 |
+
if image is not None:
|
41 |
+
h, w, _ = image.shape
|
42 |
+
|
43 |
+
# Inference
|
44 |
+
self.model.setInputSize([w, h])
|
45 |
+
results = self.model.infer(image)
|
46 |
+
|
47 |
+
faces = results[:num_faces] if num_faces else results
|
48 |
+
|
49 |
+
bboxs = []
|
50 |
+
|
51 |
+
for face in faces:
|
52 |
+
bbox = face[0:4].astype(np.int32) # x,y,w,h
|
53 |
+
x, y, w, h = bbox
|
54 |
+
# draw
|
55 |
+
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
56 |
+
bboxs.append(bbox)
|
57 |
+
|
58 |
+
return image, bboxs
|
59 |
+
|
60 |
+
def resize(self, image, target_size=512, above_head_ratio=0.5):
|
61 |
+
height, width, _c = image.shape
|
62 |
+
ar = width / height
|
63 |
+
# downscale the image
|
64 |
+
if not target_size:
|
65 |
+
target_size = 512
|
66 |
+
if ar > 1:
|
67 |
+
# Landscape
|
68 |
+
new_height = target_size
|
69 |
+
new_width = int(target_size * ar)
|
70 |
+
elif ar < 1:
|
71 |
+
# Portrait
|
72 |
+
new_width = target_size
|
73 |
+
new_height = int(target_size / ar)
|
74 |
+
else:
|
75 |
+
# Square
|
76 |
+
new_width = target_size
|
77 |
+
new_height = target_size
|
78 |
+
|
79 |
+
resized = cv2.resize(
|
80 |
+
image, (new_width, new_height), interpolation=cv2.INTER_AREA
|
81 |
+
)
|
82 |
+
|
83 |
+
# Perform object detection on the resized image
|
84 |
+
dt_image, bboxes = self.detect(resized.copy())
|
85 |
+
|
86 |
+
# crop around face
|
87 |
+
if len(bboxes) >= 1:
|
88 |
+
x, y, w, h = bboxes[0]
|
89 |
+
else:
|
90 |
+
x, y, w, h = 0, 0, target_size, target_size
|
91 |
+
# 20% of image height
|
92 |
+
above_head_max = int(target_size * above_head_ratio)
|
93 |
+
x_center = int((x + (x + w)) / 2)
|
94 |
+
y_center = int((y + (y + h)) / 2)
|
95 |
+
# Calculate cropping box
|
96 |
+
top = int(max(0, y_center - above_head_max))
|
97 |
+
bottom = int(min(top + target_size, resized.shape[0]))
|
98 |
+
|
99 |
+
left = int(max(0, x_center - target_size // 2))
|
100 |
+
right = int(min(x_center + target_size // 2, resized.shape[1]))
|
101 |
+
|
102 |
+
# adjust width if necessory
|
103 |
+
_w = right - left
|
104 |
+
if _w != target_size:
|
105 |
+
dx = (
|
106 |
+
target_size - _w
|
107 |
+
) # difference between the target size and the current width
|
108 |
+
nl = max(0, left - dx)
|
109 |
+
dr = dx - nl # remaining adjustment needed for the right coordinate
|
110 |
+
left = nl
|
111 |
+
right += dr
|
112 |
+
|
113 |
+
cropped_image = resized[top:bottom, left:right]
|
114 |
+
return dt_image, cropped_image
|