Spaces:
Sleeping
Sleeping
File size: 1,320 Bytes
3442a32 b2d5a8f 3442a32 b2d5a8f 3442a32 b2d5a8f 3442a32 72bbd2c b2d5a8f 3442a32 b2d5a8f 47f0be1 3442a32 b2d5a8f 3442a32 b2d5a8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import os
import torch
import gradio as gr
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = AutoProcessor.from_pretrained("microsoft/git-base")
model = AutoModelForCausalLM.from_pretrained("sam749/sd-portrait-caption").to(device)
def generate_captions(images, max_length=200):
# prepare image for the model
inputs = processor(images=images, return_tensors="pt").to(device)
pixel_values = inputs.pixel_values
generated_ids = model.generate(pixel_values=pixel_values, max_length=max_length)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)
return generated_caption
def generate_caption(image, max_length=200):
return generate_captions([image], max_length)[0]
image_input = gr.Image(type="pil", label="Upload Image", height=400)
max_length_slider = gr.Slider(minimum=10, maximum=400, value=200, step=8, label="Max Length")
caption_output = gr.Textbox(label="Generated Caption")
demo = gr.Interface(
fn=generate_caption,
inputs=[image_input, max_length_slider],
outputs=caption_output,
theme="gradio/monochrome",
title="Stable Diffusion Portrait Captioner",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()
|