BestRAG / app.py
samadpls's picture
Add initial implementation of BestRAG library with Streamlit app and README updates
37c5884
raw
history blame
3.22 kB
import json
import streamlit as st
from bestrag import BestRAG
import os
# Streamlit app title
col1, col2 = st.columns([1, 5])
with col1:
st.image("https://github.com/user-attachments/assets/e23d11d5-2d7b-44e2-aa11-59ddcb66bebc", width=140)
with col2:
st.title("BestRAG - Hybrid Retrieval-Augmented Generation (RAG)")
st.markdown("""
[![GitHub stars](https://img.shields.io/github/stars/samadpls/BestRAG?color=red&label=stars&logoColor=black&style=social)](https://github.com/samadpls/BestRAG)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/bestrag?style=social)](https://pypi.org/project/bestrag/)
> **Note**: Qdrant offers a free tier with 4GB of storage. To generate your API key and endpoint, visit [Qdrant](https://qdrant.tech/).
You can use BestRAG freely by installing it with `pip install bestrag`. For more details, visit the [GitHub repository](https://github.com/samadpls/BestRAG).
Made with ❤️ by [samadpls](https://github.com/samadpls)
""")
# Input fields for BestRAG initialization
url = st.text_input("Qdrant URL", "https://YOUR_QDRANT_URL")
api_key = st.text_input("Qdrant API Key", "YOUR_API_KEY")
collection_name = st.text_input("Collection Name", "YOUR_COLLECTION_NAME")
# Initialize BestRAG only when the user clicks a button
if st.button("Initialize BestRAG"):
st.session_state['rag'] = BestRAG(url=url, api_key=api_key, collection_name=collection_name)
st.success("BestRAG initialized successfully!")
# Check if BestRAG is initialized
if 'rag' in st.session_state:
rag = st.session_state['rag']
# Tabs for different functionalities
tab1, tab2 = st.tabs(["Create Embeddings", "Search Embeddings"])
with tab1:
st.header("Create Embeddings")
# File uploader for PDF
pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
if st.button("Create Embeddings"):
if pdf_file is not None:
# Save the uploaded PDF to a temporary file
temp_pdf_path = os.path.join("/tmp", pdf_file.name)
with open(temp_pdf_path, "wb") as f:
f.write(pdf_file.getbuffer())
# Use the uploaded PDF's name
pdf_name = pdf_file.name
# Store PDF embeddings
rag.store_pdf_embeddings(temp_pdf_path, pdf_name)
st.success(f"Embeddings created for {pdf_name}")
else:
st.error("Please upload a PDF file.")
with tab2:
st.header("Search Embeddings")
# Input fields for search
query = st.text_input("Search Query", "example query")
limit = st.number_input("Limit", min_value=1, max_value=20, value=5)
if st.button("Search"):
# Perform search
results = rag.search(query, limit)
# Display results
st.subheader("Search Results")
for result in results.points:
st.json({
"id": result.id,
"score": result.score,
"payload": result.payload
})
else:
st.warning("Please initialize BestRAG first.")