--- title: BestRAG emoji: 🌖 colorFrom: indigo colorTo: green sdk: streamlit sdk_version: 1.41.1 app_file: app.py pinned: false license: mit short_description: 'BestRAG: Hybrid Retrieval-Augmented Generation library' --- # BestRAG - Hybrid Retrieval-Augmented Generation (RAG) **BestRAG** is a Python library that leverages a hybrid Retrieval-Augmented Generation (RAG) approach to efficiently store and retrieve embeddings. By combining dense, sparse, and late interaction embeddings, BestRAG offers a robust solution for managing large datasets. ## Features - 🚀 **Hybrid RAG**: Utilizes dense, sparse, and late interaction embeddings for enhanced performance. - 🔌 **Easy Integration**: Simple API for storing and searching embeddings. - 📄 **PDF Support**: Directly store embeddings from PDF documents. ## How to Use 1. **Initialize BestRAG**: Enter your Qdrant URL, API Key, and Collection Name, then click "Initialize BestRAG". 2. **Create Embeddings**: Upload a PDF file and click "Create Embeddings" to store embeddings. 3. **Search Embeddings**: Enter a search query and set the limit, then click "Search" to retrieve results. ## Installation You can use BestRAG freely by installing it with: ```bash pip install bestrag ``` For more details, visit the [GitHub repository](https://github.com/samadpls/BestRAG). [![GitHub stars](https://img.shields.io/github/stars/samadpls/BestRAG?color=red&label=stars&logoColor=black&style=social)](https://github.com/samadpls/BestRAG) [![PyPI - Downloads](https://img.shields.io/pypi/dm/bestrag?style=social)](https://pypi.org/project/bestrag/) > **Note**: Qdrant offers a free tier with 4GB of storage. To generate your API key and endpoint, visit [Qdrant](https://qdrant.tech/). Made with ❤️ by [samadpls](https://github.com/samadpls) --- Please like this project on [GitHub](https://github.com/samadpls/BestRAG) if you find it useful!