File size: 12,296 Bytes
64eefbd
 
 
 
 
 
880d47e
64eefbd
 
 
880d47e
1c19586
64eefbd
6f6111b
64eefbd
488b328
1c19586
f252e0f
 
880d47e
64eefbd
880d47e
 
 
f252e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
880d47e
 
64eefbd
880d47e
 
f252e0f
880d47e
 
 
 
d460cd1
 
 
 
880d47e
 
 
 
 
 
 
 
 
 
 
 
f252e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d460cd1
 
64eefbd
 
 
 
 
 
880d47e
 
 
64eefbd
 
 
 
 
880d47e
64eefbd
 
 
1c19586
880d47e
1c19586
64eefbd
1c19586
64eefbd
1c19586
 
488b328
64eefbd
6f6111b
 
 
c865d7c
6f6111b
 
 
 
 
 
10a2c49
6f6111b
64eefbd
880d47e
64eefbd
 
880d47e
 
 
 
 
 
 
 
64eefbd
 
 
 
c865d7c
 
 
 
7ba089c
 
f57c0c6
 
c865d7c
 
 
320fb70
 
 
880d47e
64eefbd
880d47e
 
 
10a2c49
64eefbd
880d47e
 
 
 
 
488b328
 
9718ae7
488b328
2582114
64eefbd
 
2582114
64eefbd
488b328
f252e0f
 
 
 
 
 
880d47e
 
 
 
 
 
 
64eefbd
1c19586
10a2c49
880d47e
 
 
 
 
 
1c19586
880d47e
1c19586
880d47e
1c19586
8663a63
1c19586
880d47e
8663a63
 
 
880d47e
64eefbd
 
 
 
 
 
 
1c19586
488b328
6f6111b
1c19586
 
488b328
880d47e
 
 
f252e0f
 
880d47e
 
 
 
c865d7c
880d47e
 
c865d7c
 
 
 
 
 
10a2c49
c865d7c
 
 
 
 
880d47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a2c49
f252e0f
 
880d47e
 
f252e0f
 
 
 
 
 
 
 
 
 
 
873755d
 
f252e0f
 
 
 
 
880d47e
 
 
 
 
f252e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
873755d
 
 
f252e0f
 
 
 
 
 
880d47e
62eb936
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""
Travel planner based on Agentic AI workflow.

This module deploys a portal which can customize a day to day travel itinerary
for a person using multiple specialized AI crews.

Implemented using Sambanova Cloud, Gradio and Crew AI.
A deployment is available at https://huggingface.co/spaces/sambanovasystems/trip-planner
"""

import datetime
import json
import logging
from typing import List, Tuple

import gradio as gr
import plotly.graph_objects as go
import os
import openai

from crew import AddressSummaryCrew, TravelCrew
from db import log_query
from fpdf import FPDF

client = openai.OpenAI(
    api_key=os.environ.get("SAMBANOVA_API_KEY"),
    base_url="https://api.sambanova.ai/v1",
)

def start_chat(context):
    return gr.Chatbot(visible=True), gr.Textbox(visible=True), context

def respond(message, chat_history, context, model="Meta-Llama-3.1-70B-Instruct"):
    # Simple response incorporating context
    response = client.chat.completions.create(
                   model=model,
                   messages=[{"role":"system",
                              "content":"You are a helpful assistant"},
                             {"role": "user",
                              "content": "Here is a trip itinerary: %s. Please answer the specific question asked by the user. %s " % (message, context)}],
                   temperature=0.1,
                   top_p=0.1
                )
    result = response.choices[0].message.content
    bot_message = result
    chat_history.append((message, bot_message))
    return "", chat_history

def export_pdf(input_text:str, input_chat:str):
    """
    Create a downloadable pdf for the given input text

    Args:
         input_text: The text that needs to be made a pdf
         input_chat: Chat messages

    Result:
         Downloadable pdf
    """
    current_datetime = datetime.datetime.now()
    # Format the current date and time as YYYY-MM-DD_HH-MM-SS
    datetime_str = current_datetime.strftime("%Y-%m-%d_%H-%M-%S")
    file_name = "itinerary_%s.pdf" % datetime_str
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("helvetica", size=12)

    for line in input_text.split('\n'):
        clean_line = line.strip()
        if clean_line.startswith('**'):
            pdf.set_font("Arial", size=12, style='B')
            pdf.multi_cell(0, 5, clean_line[2:].lstrip()[:-2].rstrip())
            pdf.set_font("Arial", size=12, style='')
        else:
            pdf.multi_cell(0, 5, clean_line)

    pdf.ln()
    for conversation in input_chat:
        counter = 0
        for line in conversation:
            clean_line = line.strip()
            if clean_line:
                if counter == 0:
                    pdf.ln()
                    pdf.set_font("Arial", size=12, style='I')
                    counter += 1
                else:
                    pdf.set_font("Arial", size=12, style='')
                pdf.multi_cell(0, 5, clean_line)

    pdf.output(file_name).encode('latin-1')
    return file_name

def filter_map(text_list: List[str], lat: List[str], lon: List[str]) -> go.Figure:
    """
    Create a Map showing the points specified in the inputs.

    Args:
        text_list: List of the description of all locations that will be shown on the map.
        lat:       List of latitude coordinates of the locations.
        lon:       List of longitude coordinates of the locations.

    Returns:
        Figure: Map with the points specified in the inputs
    """

    # Creating a map with the provided markers using their latitude and longitude coordinates.
    fig = go.Figure(
        go.Scattermapbox(lat=lat, lon=lon, mode='markers', marker=go.scattermapbox.Marker(size=11), hovertext=text_list)
    )

    # Update the map by centering it on of the the provided longitude and latitude coordinates
    fig.update_layout(
        mapbox_style='open-street-map',
        hovermode='closest',
        mapbox=dict(bearing=0, center=go.layout.mapbox.Center(lat=lat[1], lon=lon[1]), pitch=0, zoom=10),
    )
    return fig


def run(
    origin: str,
    destination: str,
    arrival_date: str,
    age: int,
    trip_duration: int,
    interests: List[str],
    cuisine_preferences: List[str],
    children: bool,
    budget: int,
    model_name:str='Meta-Llama-3.1-70B-Instruct'
) -> Tuple[str, go.Figure]:
    """
    Run the specfied query using Crew AI agents.

    Args:
        origin: Origin city of the traveller.
        destination: Destination to which the traveller is going.
        arrival_date: Approximate date when the trip will begin in epoch time.
        age: Age profile of traveller.
        interests: Specific interests of the traveller.
        cuisine_preferences: Specific cuisine preferences of the traveller.
        children: Whether traveller has children travelling with them.
        budget: Total budget of traveller in US Dollars.

    Returns:
        Returns a tuple containing the itinerary and map
    """
    # Gradio Datetime is currently not working on HF
    # See https://github.com/gradio-app/gradio/issues/10358
    # Hece disabling datetime input and reverting back to string input
    """
    if arrival_date:
        arrival_date_input = datetime.datetime.fromtimestamp(arrival_date).strftime("%m-%d-%Y")
    else:
        arrival_date_input = None
    """
    if arrival_date:
        arrival_date_input = arrival_date.strip()
    else:
        arrival_date_input = None

    log_query(origin, destination, age, trip_duration, budget)
    logger.info(
        f'Origin: {origin}, Destination: {destination}, Arrival Date: {arrival_date_input},'
        f' Age: {age}, Duration: {trip_duration},'
        f' Interests: {interests}, Cuisines: {cuisine_preferences},'
        f' Children: {children}, Daily Budget: {budget}, Model Name: {model_name}'
    )

    # Creating a dictionary of user provided preferences and providing these to the crew agents
    # to work on.

    user_preferences = {
        'origin': origin,
        'destination': destination,
        'arrival_date': arrival_date_input,
        'age': age,
        'trip_duration': trip_duration,
        'interests': interests,
        'cuisine_preferences': cuisine_preferences,
        'children': children,
        'budget': budget,
    }
    #result = TravelCrew(model_name).crew().kickoff(inputs=user_preferences)
    crew = TravelCrew(model_name).crew()
    result = crew.kickoff(inputs=user_preferences)
    metrics = crew.usage_metrics
    logger.info("Result Metrics")
    logger.info(metrics)

    """
        Now we will pass the result to a address summary crew whose job is to extract position
        coordinates of the addresses (latitude and longitude), so that the addresses in the
        result can be displayed in map coordinates
    """

    inputs_for_address = {'text': str(result)}

    addresses = AddressSummaryCrew(model_name).crew().kickoff(inputs=inputs_for_address)

    """
        We have requested the crew agent to return latitude, longitude coordinates.
        But the exact way the LLMs return varies. Hence we try multiple different ways of
        extracting addresses in JSON format from the result.
    """
    json_addresses = None
    if addresses.json_dict is not None:
        json_addresses = addresses.json_dict
    if json_addresses is None:
        try:
            json_addresses = json.loads(addresses.raw)
        except json.JSONDecodeError as e:
            # Try with different format of result data generated with ```json and ending with ```.
            try:
                json_addresses = json.loads(addresses.raw[8:-4])
            except json.JSONDecodeError as e:
                # Try with different format of result data generated with ``` and ending with ```.
                try:
                    json_addresses = json.loads(addresses.raw[4:-4])
                except json.JSONDecodeError as e:
                    logger.error('Error loading Crew Output for addresses')
                    logger.info(addresses.raw)
                    return (result, None)
    fig = filter_map(json_addresses['name'], json_addresses['lat'], json_addresses['lon'])
    return (result, fig)


logger = logging.getLogger()
logger.setLevel(logging.INFO)

with gr.Blocks() as demo:
    gr.Markdown('Use this app to create a detailed itinerary on how to explore a new place.'
                ' Itinerary is customized to your taste. Powered by Sambanova Cloud.')
    # Store context between interactions
    context = gr.State()
    with gr.Row():
        with gr.Column(scale=1):
            inp_source = gr.Textbox(label='Where are you travelling from?')
            inp_dest = gr.Textbox(label='Where are you going?')
            inp_cal = gr.Textbox(label='Approximate arrival date in mm-dd-yyyy')
            inp_age = gr.Slider(label='Your age?', value=30, minimum=15, maximum=90, step=5)
            inp_days = gr.Slider(label='How many days are you travelling?', value=5, minimum=1, maximum=14, step=1)
            inp_interests =\
            gr.CheckboxGroup(
                [
                   'Museums',
                   'Outdoor Adventures',
                   'Shopping',
                   'Children\'s Entertainment',
                   'Off the beat activities',
                   'Night Life',
                ],
               label='Checkbox your interests.',
            )
            inp_cuisine =\
            gr.CheckboxGroup(
                [
                    'Ethnic',
                    'American',
                    'Italian',
                    'Mexican',
                    'Chinese',
                    'Japanese',
                    'Indian',
                    'Thai',
                    'French',
                    'Vietnamese',
                    'Vegan',
               ],
               label='Checkbox your cuisine preferences.',
            )
            inp_children = gr.Checkbox(label='Check if children are travelling with you')
            inp_budget =\
               gr.Slider(
               label='Total budget of trip in USD', show_label=True, value=1000, minimum=500, maximum=10000, step=500
            )
            inp_model = gr.Textbox(value="Meta-Llama-3.1-70B-Instruct", label='Sambanova Model Name')
            plan_button = gr.Button("Plan your Trip")
        inputs = [inp_source, inp_dest, inp_cal, inp_age, inp_days, inp_interests, inp_cuisine, inp_children, inp_budget, inp_model]

        with gr.Column(scale=2):
            with gr.Row():
                output_itinerary =\
                gr.Textbox(
                    label='Complete Personalized Itinerary of your Trip',
                    show_label=True,
                    show_copy_button=True,
                    autoscroll=False,
                )

            # Chat interface (hidden initially)
            with gr.Row(visible=False) as chat_interface:
                chatbot = gr.Chatbot(label='Chat with the itinerary')
                input_msg = gr.Textbox(label='Ask a question')

            # Chat controls
            start_chat_btn = gr.Button("Start Chat", visible=False)

            # Download button
            download_btn = gr.Button("Download Itinerary")

            output_map = gr.Plot(label='Venues on a Map. Please verify with a Navigation System before traveling.')
            output = [output_itinerary, output_map]

    plan_button.click(fn=run, inputs=inputs, outputs=output).then(
                          lambda: gr.Button(visible=True),
                          outputs=start_chat_btn)

    download_btn_hidden = gr.DownloadButton(visible=False, elem_id="download_btn_hidden")
    download_btn.click(fn=export_pdf, inputs=[output_itinerary, chatbot], outputs=[download_btn_hidden]).then(fn=None, inputs=None, outputs=None, js="() => document.querySelector('#download_btn_hidden').click()")

    start_chat_btn.click(
        start_chat,
        inputs=output_itinerary,
        outputs=[chatbot, input_msg, context]
    ).then(
        lambda: gr.Row(visible=True),
        outputs=chat_interface
    ).then(
        lambda: gr.Button(visible=False),
        outputs=start_chat_btn)

    input_msg.submit(
        respond,
        inputs=[input_msg, chatbot, context, inp_model],
        outputs=[input_msg, chatbot]
    )

demo.launch()