Spaces:
Running
Running
File size: 12,296 Bytes
64eefbd 880d47e 64eefbd 880d47e 1c19586 64eefbd 6f6111b 64eefbd 488b328 1c19586 f252e0f 880d47e 64eefbd 880d47e f252e0f 880d47e 64eefbd 880d47e f252e0f 880d47e d460cd1 880d47e f252e0f d460cd1 64eefbd 880d47e 64eefbd 880d47e 64eefbd 1c19586 880d47e 1c19586 64eefbd 1c19586 64eefbd 1c19586 488b328 64eefbd 6f6111b c865d7c 6f6111b 10a2c49 6f6111b 64eefbd 880d47e 64eefbd 880d47e 64eefbd c865d7c 7ba089c f57c0c6 c865d7c 320fb70 880d47e 64eefbd 880d47e 10a2c49 64eefbd 880d47e 488b328 9718ae7 488b328 2582114 64eefbd 2582114 64eefbd 488b328 f252e0f 880d47e 64eefbd 1c19586 10a2c49 880d47e 1c19586 880d47e 1c19586 880d47e 1c19586 8663a63 1c19586 880d47e 8663a63 880d47e 64eefbd 1c19586 488b328 6f6111b 1c19586 488b328 880d47e f252e0f 880d47e c865d7c 880d47e c865d7c 10a2c49 c865d7c 880d47e 10a2c49 f252e0f 880d47e f252e0f 873755d f252e0f 880d47e f252e0f 873755d f252e0f 880d47e 62eb936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
"""
Travel planner based on Agentic AI workflow.
This module deploys a portal which can customize a day to day travel itinerary
for a person using multiple specialized AI crews.
Implemented using Sambanova Cloud, Gradio and Crew AI.
A deployment is available at https://huggingface.co/spaces/sambanovasystems/trip-planner
"""
import datetime
import json
import logging
from typing import List, Tuple
import gradio as gr
import plotly.graph_objects as go
import os
import openai
from crew import AddressSummaryCrew, TravelCrew
from db import log_query
from fpdf import FPDF
client = openai.OpenAI(
api_key=os.environ.get("SAMBANOVA_API_KEY"),
base_url="https://api.sambanova.ai/v1",
)
def start_chat(context):
return gr.Chatbot(visible=True), gr.Textbox(visible=True), context
def respond(message, chat_history, context, model="Meta-Llama-3.1-70B-Instruct"):
# Simple response incorporating context
response = client.chat.completions.create(
model=model,
messages=[{"role":"system",
"content":"You are a helpful assistant"},
{"role": "user",
"content": "Here is a trip itinerary: %s. Please answer the specific question asked by the user. %s " % (message, context)}],
temperature=0.1,
top_p=0.1
)
result = response.choices[0].message.content
bot_message = result
chat_history.append((message, bot_message))
return "", chat_history
def export_pdf(input_text:str, input_chat:str):
"""
Create a downloadable pdf for the given input text
Args:
input_text: The text that needs to be made a pdf
input_chat: Chat messages
Result:
Downloadable pdf
"""
current_datetime = datetime.datetime.now()
# Format the current date and time as YYYY-MM-DD_HH-MM-SS
datetime_str = current_datetime.strftime("%Y-%m-%d_%H-%M-%S")
file_name = "itinerary_%s.pdf" % datetime_str
pdf = FPDF()
pdf.add_page()
pdf.set_font("helvetica", size=12)
for line in input_text.split('\n'):
clean_line = line.strip()
if clean_line.startswith('**'):
pdf.set_font("Arial", size=12, style='B')
pdf.multi_cell(0, 5, clean_line[2:].lstrip()[:-2].rstrip())
pdf.set_font("Arial", size=12, style='')
else:
pdf.multi_cell(0, 5, clean_line)
pdf.ln()
for conversation in input_chat:
counter = 0
for line in conversation:
clean_line = line.strip()
if clean_line:
if counter == 0:
pdf.ln()
pdf.set_font("Arial", size=12, style='I')
counter += 1
else:
pdf.set_font("Arial", size=12, style='')
pdf.multi_cell(0, 5, clean_line)
pdf.output(file_name).encode('latin-1')
return file_name
def filter_map(text_list: List[str], lat: List[str], lon: List[str]) -> go.Figure:
"""
Create a Map showing the points specified in the inputs.
Args:
text_list: List of the description of all locations that will be shown on the map.
lat: List of latitude coordinates of the locations.
lon: List of longitude coordinates of the locations.
Returns:
Figure: Map with the points specified in the inputs
"""
# Creating a map with the provided markers using their latitude and longitude coordinates.
fig = go.Figure(
go.Scattermapbox(lat=lat, lon=lon, mode='markers', marker=go.scattermapbox.Marker(size=11), hovertext=text_list)
)
# Update the map by centering it on of the the provided longitude and latitude coordinates
fig.update_layout(
mapbox_style='open-street-map',
hovermode='closest',
mapbox=dict(bearing=0, center=go.layout.mapbox.Center(lat=lat[1], lon=lon[1]), pitch=0, zoom=10),
)
return fig
def run(
origin: str,
destination: str,
arrival_date: str,
age: int,
trip_duration: int,
interests: List[str],
cuisine_preferences: List[str],
children: bool,
budget: int,
model_name:str='Meta-Llama-3.1-70B-Instruct'
) -> Tuple[str, go.Figure]:
"""
Run the specfied query using Crew AI agents.
Args:
origin: Origin city of the traveller.
destination: Destination to which the traveller is going.
arrival_date: Approximate date when the trip will begin in epoch time.
age: Age profile of traveller.
interests: Specific interests of the traveller.
cuisine_preferences: Specific cuisine preferences of the traveller.
children: Whether traveller has children travelling with them.
budget: Total budget of traveller in US Dollars.
Returns:
Returns a tuple containing the itinerary and map
"""
# Gradio Datetime is currently not working on HF
# See https://github.com/gradio-app/gradio/issues/10358
# Hece disabling datetime input and reverting back to string input
"""
if arrival_date:
arrival_date_input = datetime.datetime.fromtimestamp(arrival_date).strftime("%m-%d-%Y")
else:
arrival_date_input = None
"""
if arrival_date:
arrival_date_input = arrival_date.strip()
else:
arrival_date_input = None
log_query(origin, destination, age, trip_duration, budget)
logger.info(
f'Origin: {origin}, Destination: {destination}, Arrival Date: {arrival_date_input},'
f' Age: {age}, Duration: {trip_duration},'
f' Interests: {interests}, Cuisines: {cuisine_preferences},'
f' Children: {children}, Daily Budget: {budget}, Model Name: {model_name}'
)
# Creating a dictionary of user provided preferences and providing these to the crew agents
# to work on.
user_preferences = {
'origin': origin,
'destination': destination,
'arrival_date': arrival_date_input,
'age': age,
'trip_duration': trip_duration,
'interests': interests,
'cuisine_preferences': cuisine_preferences,
'children': children,
'budget': budget,
}
#result = TravelCrew(model_name).crew().kickoff(inputs=user_preferences)
crew = TravelCrew(model_name).crew()
result = crew.kickoff(inputs=user_preferences)
metrics = crew.usage_metrics
logger.info("Result Metrics")
logger.info(metrics)
"""
Now we will pass the result to a address summary crew whose job is to extract position
coordinates of the addresses (latitude and longitude), so that the addresses in the
result can be displayed in map coordinates
"""
inputs_for_address = {'text': str(result)}
addresses = AddressSummaryCrew(model_name).crew().kickoff(inputs=inputs_for_address)
"""
We have requested the crew agent to return latitude, longitude coordinates.
But the exact way the LLMs return varies. Hence we try multiple different ways of
extracting addresses in JSON format from the result.
"""
json_addresses = None
if addresses.json_dict is not None:
json_addresses = addresses.json_dict
if json_addresses is None:
try:
json_addresses = json.loads(addresses.raw)
except json.JSONDecodeError as e:
# Try with different format of result data generated with ```json and ending with ```.
try:
json_addresses = json.loads(addresses.raw[8:-4])
except json.JSONDecodeError as e:
# Try with different format of result data generated with ``` and ending with ```.
try:
json_addresses = json.loads(addresses.raw[4:-4])
except json.JSONDecodeError as e:
logger.error('Error loading Crew Output for addresses')
logger.info(addresses.raw)
return (result, None)
fig = filter_map(json_addresses['name'], json_addresses['lat'], json_addresses['lon'])
return (result, fig)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
with gr.Blocks() as demo:
gr.Markdown('Use this app to create a detailed itinerary on how to explore a new place.'
' Itinerary is customized to your taste. Powered by Sambanova Cloud.')
# Store context between interactions
context = gr.State()
with gr.Row():
with gr.Column(scale=1):
inp_source = gr.Textbox(label='Where are you travelling from?')
inp_dest = gr.Textbox(label='Where are you going?')
inp_cal = gr.Textbox(label='Approximate arrival date in mm-dd-yyyy')
inp_age = gr.Slider(label='Your age?', value=30, minimum=15, maximum=90, step=5)
inp_days = gr.Slider(label='How many days are you travelling?', value=5, minimum=1, maximum=14, step=1)
inp_interests =\
gr.CheckboxGroup(
[
'Museums',
'Outdoor Adventures',
'Shopping',
'Children\'s Entertainment',
'Off the beat activities',
'Night Life',
],
label='Checkbox your interests.',
)
inp_cuisine =\
gr.CheckboxGroup(
[
'Ethnic',
'American',
'Italian',
'Mexican',
'Chinese',
'Japanese',
'Indian',
'Thai',
'French',
'Vietnamese',
'Vegan',
],
label='Checkbox your cuisine preferences.',
)
inp_children = gr.Checkbox(label='Check if children are travelling with you')
inp_budget =\
gr.Slider(
label='Total budget of trip in USD', show_label=True, value=1000, minimum=500, maximum=10000, step=500
)
inp_model = gr.Textbox(value="Meta-Llama-3.1-70B-Instruct", label='Sambanova Model Name')
plan_button = gr.Button("Plan your Trip")
inputs = [inp_source, inp_dest, inp_cal, inp_age, inp_days, inp_interests, inp_cuisine, inp_children, inp_budget, inp_model]
with gr.Column(scale=2):
with gr.Row():
output_itinerary =\
gr.Textbox(
label='Complete Personalized Itinerary of your Trip',
show_label=True,
show_copy_button=True,
autoscroll=False,
)
# Chat interface (hidden initially)
with gr.Row(visible=False) as chat_interface:
chatbot = gr.Chatbot(label='Chat with the itinerary')
input_msg = gr.Textbox(label='Ask a question')
# Chat controls
start_chat_btn = gr.Button("Start Chat", visible=False)
# Download button
download_btn = gr.Button("Download Itinerary")
output_map = gr.Plot(label='Venues on a Map. Please verify with a Navigation System before traveling.')
output = [output_itinerary, output_map]
plan_button.click(fn=run, inputs=inputs, outputs=output).then(
lambda: gr.Button(visible=True),
outputs=start_chat_btn)
download_btn_hidden = gr.DownloadButton(visible=False, elem_id="download_btn_hidden")
download_btn.click(fn=export_pdf, inputs=[output_itinerary, chatbot], outputs=[download_btn_hidden]).then(fn=None, inputs=None, outputs=None, js="() => document.querySelector('#download_btn_hidden').click()")
start_chat_btn.click(
start_chat,
inputs=output_itinerary,
outputs=[chatbot, input_msg, context]
).then(
lambda: gr.Row(visible=True),
outputs=chat_interface
).then(
lambda: gr.Button(visible=False),
outputs=start_chat_btn)
input_msg.submit(
respond,
inputs=[input_msg, chatbot, context, inp_model],
outputs=[input_msg, chatbot]
)
demo.launch()
|