|
from fastapi import FastAPI, Query |
|
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
import torch |
|
|
|
app = FastAPI() |
|
|
|
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct" |
|
min_pixels = 256*28*28 |
|
max_pixels = 1280*28*28 |
|
processor = AutoProcessor.from_pretrained( |
|
checkpoint, |
|
min_pixels=min_pixels, |
|
max_pixels=max_pixels |
|
) |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
checkpoint, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
|
|
) |
|
|
|
@app.get("/") |
|
def read_root(): |
|
return {"message": "API is live. Use the /predict endpoint."} |
|
|
|
@app.get("/predict") |
|
def predict(image_url: str = Query(...), prompt: str = Query(...)): |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant with vision abilities."}, |
|
{"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]}, |
|
] |
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
).to(model.device) |
|
with torch.no_grad(): |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] |
|
output_texts = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
return {"response": output_texts[0]} |
|
|