Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
import streamlit as st
|
2 |
import soundfile as sf
|
3 |
-
|
4 |
-
from transformers import pipeline
|
5 |
-
import shutil
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
9 |
try:
|
10 |
-
classifier = pipeline("audio-classification", model=
|
11 |
except Exception as e:
|
12 |
-
st.write(f"{e}")
|
13 |
|
14 |
# Title and description
|
15 |
st.title("Audio Emotion Classification")
|
@@ -20,15 +20,18 @@ uploaded_file = st.file_uploader("Choose an audio file...", type=["wav", "mp3",
|
|
20 |
|
21 |
if uploaded_file is not None:
|
22 |
# Load the audio file
|
23 |
-
audio_input,sample_rate=sf.read(uploaded_file)
|
24 |
|
25 |
# Display the audio player
|
26 |
st.audio(uploaded_file)
|
27 |
|
28 |
# Perform emotion classification
|
29 |
st.write("Classifying...")
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import soundfile as sf
|
3 |
+
from transformers import pipeline, Wav2Vec2ForSequenceClassification, Wav2Vec2Tokenizer
|
|
|
|
|
4 |
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "sami606713/emotion_classification"
|
7 |
+
|
8 |
+
# Initialize the pipeline
|
9 |
try:
|
10 |
+
classifier = pipeline("audio-classification", model=model_name, tokenizer=model_name)
|
11 |
except Exception as e:
|
12 |
+
st.write(f"Error loading model: {e}")
|
13 |
|
14 |
# Title and description
|
15 |
st.title("Audio Emotion Classification")
|
|
|
20 |
|
21 |
if uploaded_file is not None:
|
22 |
# Load the audio file
|
23 |
+
audio_input, sample_rate = sf.read(uploaded_file)
|
24 |
|
25 |
# Display the audio player
|
26 |
st.audio(uploaded_file)
|
27 |
|
28 |
# Perform emotion classification
|
29 |
st.write("Classifying...")
|
30 |
+
try:
|
31 |
+
predictions = classifier(audio_input, sampling_rate=sample_rate)
|
32 |
+
|
33 |
+
# Display the results
|
34 |
+
for prediction in predictions:
|
35 |
+
st.write(f"Emotion: {prediction['label']}, Score: {prediction['score']:.2f}")
|
36 |
+
except Exception as e:
|
37 |
+
st.write(f"Error during classification: {e}")
|