Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -65,10 +65,8 @@ def create_langchain_index(input_text):
|
|
65 |
# load it into Chroma
|
66 |
db = Chroma.from_documents(docs, embeddings)
|
67 |
persist_directory = "chroma_db"
|
68 |
-
vectordb = Chroma.from_documents(
|
69 |
-
|
70 |
-
)
|
71 |
-
new_db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
72 |
return db
|
73 |
|
74 |
# @st.cache_resource
|
@@ -82,7 +80,7 @@ def create_langchain_index(input_text):
|
|
82 |
|
83 |
|
84 |
@st.cache_data
|
85 |
-
def get_response(input_text,query):
|
86 |
print(f"--querying---{query}")
|
87 |
retrieval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever())
|
88 |
response = retrieval_chain.run(query)
|
@@ -102,15 +100,15 @@ tweet_response = ""
|
|
102 |
ln_response = ""
|
103 |
# if st.button("Load"):
|
104 |
if input_text:
|
105 |
-
|
106 |
summary_query ="Write a 100 words summary of the document"
|
107 |
-
summary_response = get_response(input_text,summary_query)
|
108 |
|
109 |
tweet_query ="Write a twitter tweet"
|
110 |
-
tweet_response = get_response(input_text,tweet_query)
|
111 |
|
112 |
ln_query ="Write a linkedin post for the document"
|
113 |
-
ln_response = get_response(input_text,ln_query)
|
114 |
|
115 |
|
116 |
with st.expander('Page Summary'):
|
@@ -127,8 +125,8 @@ st.session_state.input_text = ''
|
|
127 |
question=st.text_input("Ask a question from the link you shared...")
|
128 |
if st.button("Ask"):
|
129 |
if question:
|
130 |
-
|
131 |
-
response = get_response(input_text,question)
|
132 |
st.write(response)
|
133 |
else:
|
134 |
st.warning("Please enter a question.")
|
|
|
65 |
# load it into Chroma
|
66 |
db = Chroma.from_documents(docs, embeddings)
|
67 |
persist_directory = "chroma_db"
|
68 |
+
#vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory=persist_directory)
|
69 |
+
#new_db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
|
|
|
|
70 |
return db
|
71 |
|
72 |
# @st.cache_resource
|
|
|
80 |
|
81 |
|
82 |
@st.cache_data
|
83 |
+
def get_response(input_text,query,db):
|
84 |
print(f"--querying---{query}")
|
85 |
retrieval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever())
|
86 |
response = retrieval_chain.run(query)
|
|
|
100 |
ln_response = ""
|
101 |
# if st.button("Load"):
|
102 |
if input_text:
|
103 |
+
db = create_langchain_index(input_text)
|
104 |
summary_query ="Write a 100 words summary of the document"
|
105 |
+
summary_response = get_response(input_text,summary_query,db)
|
106 |
|
107 |
tweet_query ="Write a twitter tweet"
|
108 |
+
tweet_response = get_response(input_text,tweet_query,db)
|
109 |
|
110 |
ln_query ="Write a linkedin post for the document"
|
111 |
+
ln_response = get_response(input_text,ln_query,db)
|
112 |
|
113 |
|
114 |
with st.expander('Page Summary'):
|
|
|
125 |
question=st.text_input("Ask a question from the link you shared...")
|
126 |
if st.button("Ask"):
|
127 |
if question:
|
128 |
+
db = create_langchain_index(input_text)
|
129 |
+
response = get_response(input_text,question,db)
|
130 |
st.write(response)
|
131 |
else:
|
132 |
st.warning("Please enter a question.")
|