Commit
·
859958b
1
Parent(s):
7c08a77
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
from pytube import YouTube
|
3 |
+
from pydub import AudioSegment
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
|
8 |
+
model = whisper.load_model("small")
|
9 |
+
|
10 |
+
# def compress_audio(file_path, bitrate='32k'):
|
11 |
+
# try:
|
12 |
+
# audio = AudioSegment.from_file(file_path)
|
13 |
+
# output_format = os.path.splitext(file_path)[1][1:]
|
14 |
+
# compressed_audio = audio.export(file_path, format=output_format, bitrate=bitrate)
|
15 |
+
# return True
|
16 |
+
# except Exception as e:
|
17 |
+
# print(f"Error: {e}")
|
18 |
+
# return False
|
19 |
+
|
20 |
+
def url_to_text(url):
|
21 |
+
if url != '':
|
22 |
+
output_text_transcribe = ''
|
23 |
+
|
24 |
+
yt = YouTube(url)
|
25 |
+
video = yt.streams.filter(only_audio=True).first()
|
26 |
+
out_file=video.download(output_path=".")
|
27 |
+
file_stats = os.stat(out_file)
|
28 |
+
|
29 |
+
if file_stats.st_size <= 30_000_000:
|
30 |
+
|
31 |
+
base, ext = os.path.splitext(out_file)
|
32 |
+
os.rename(out_file, base+'.mp3')
|
33 |
+
file_path = base+'.mp3'
|
34 |
+
# compress_audio(file_path)
|
35 |
+
|
36 |
+
result = model.transcribe(file_path)
|
37 |
+
return result['text'].strip()
|
38 |
+
else:
|
39 |
+
raise gr.Error("Exception: Problems with the audio transcription.")
|
40 |
+
|
41 |
+
def get_summary(article):
|
42 |
+
first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5])
|
43 |
+
b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False)
|
44 |
+
b = b[0]['summary_text'].replace(' .', '.').strip()
|
45 |
+
return b
|
46 |
+
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
gr.Markdown("<h1><center>Samir's AI Model Implementation - Automatic Speech Recognition</center></h1>")
|
49 |
+
gr.Markdown("<h2><center>YouTube Audio AutoTranscribe: Effortless Transcription</center></h2>")
|
50 |
+
gr.Markdown("<center><b>This application is using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a>. Whisper is an intricately designed <br>neural network aiming to achieve the highest precision in the field of multilingual speech recognition.</b></center>")
|
51 |
+
gr.Markdown("<center><b>The time for the model to perform transcription typically takes around 10 seconds for every 1 minute of video. <br>For example, a 12-minute video would take approximately 120 seconds to transcribe the audio content.</b></center>")
|
52 |
+
|
53 |
+
input_text_url = gr.Textbox(placeholder='👇Youtube Video URL👇', label='YouTube URL')
|
54 |
+
result_button_transcribe = gr.Button('Transcribe Now')
|
55 |
+
output_text_transcribe = gr.Textbox(placeholder='Transcription of the YouTube video.', label='Transcript')
|
56 |
+
|
57 |
+
result_button_transcribe.click(url_to_text, inputs = input_text_url, outputs = output_text_transcribe)
|
58 |
+
|
59 |
+
demo.queue(default_enabled = True).launch(debug = True)
|