samir-fama commited on
Commit
b42b2a5
·
1 Parent(s): d9019d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -11,15 +11,15 @@ import re
11
 
12
  model = whisper.load_model("tiny")
13
 
14
- def compress_audio(file_path, bitrate='32k'):
15
- try:
16
- audio = AudioSegment.from_file(file_path)
17
- output_format = os.path.splitext(file_path)[1][1:]
18
- compressed_audio = audio.export(file_path, format=output_format, bitrate=bitrate)
19
- return True
20
- except Exception as e:
21
- print(f"Error: {e}")
22
- return False
23
 
24
  def url_to_text(url):
25
  if url != '':
@@ -35,7 +35,7 @@ def url_to_text(url):
35
  base, ext = os.path.splitext(out_file)
36
  os.rename(out_file, base+'.mp3')
37
  file_path = base+'.mp3'
38
- compress_audio(file_path)
39
 
40
  result = model.transcribe(file_path)
41
  return result['text'].strip()
@@ -52,7 +52,7 @@ with gr.Blocks() as demo:
52
  gr.Markdown("<h1>Samir's AI Model Implementation - Automatic Speech Recognition</h1>")
53
  gr.Markdown("<h2>YouTube Audio AutoTranscribe: Effortless Transcription</h2>")
54
  gr.Markdown("<b>This application is using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a>. Whisper is an intricately designed <br>neural network aiming to achieve the highest precision in the field of multilingual speech recognition.</b>")
55
- gr.Markdown("<b>The time for the model to perform transcription typically takes around 10 seconds for every 1 minute of video. <br>For example, a 12-minute video would take approximately 120 seconds to transcribe the audio content.</b>")
56
 
57
  input_text_url = gr.Textbox(placeholder='Youtube Video URL', label='👇YouTube URL👇')
58
  result_button_transcribe = gr.Button('Transcribe Now')
 
11
 
12
  model = whisper.load_model("tiny")
13
 
14
+ # def compress_audio(file_path, bitrate='32k'):
15
+ # try:
16
+ # audio = AudioSegment.from_file(file_path)
17
+ # output_format = os.path.splitext(file_path)[1][1:]
18
+ # compressed_audio = audio.export(file_path, format=output_format, bitrate=bitrate)
19
+ # return True
20
+ # except Exception as e:
21
+ # print(f"Error: {e}")
22
+ # return False
23
 
24
  def url_to_text(url):
25
  if url != '':
 
35
  base, ext = os.path.splitext(out_file)
36
  os.rename(out_file, base+'.mp3')
37
  file_path = base+'.mp3'
38
+ # compress_audio(file_path)
39
 
40
  result = model.transcribe(file_path)
41
  return result['text'].strip()
 
52
  gr.Markdown("<h1>Samir's AI Model Implementation - Automatic Speech Recognition</h1>")
53
  gr.Markdown("<h2>YouTube Audio AutoTranscribe: Effortless Transcription</h2>")
54
  gr.Markdown("<b>This application is using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a>. Whisper is an intricately designed <br>neural network aiming to achieve the highest precision in the field of multilingual speech recognition.</b>")
55
+ gr.Markdown("<b>The time for the model to perform transcription typically takes around 15 seconds for every 1 minute of video. <br>For example, a 10-minute video would take approximately 150 seconds to transcribe the audio content.</b>")
56
 
57
  input_text_url = gr.Textbox(placeholder='Youtube Video URL', label='👇YouTube URL👇')
58
  result_button_transcribe = gr.Button('Transcribe Now')