Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from khmernltk import word_tokenize
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
|
6 |
+
# Load your model and tokenizer
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
8 |
+
"./final_model",
|
9 |
+
# load_in_8bit=True, # Use if you want to load in 8-bit quantized format
|
10 |
+
# torch_dtype=torch.float16, # Use appropriate dtype based on your GPU
|
11 |
+
# device_map="cuda:0" # Automatically map model to available devices
|
12 |
+
)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("./final_model")
|
14 |
+
|
15 |
+
# Ensure the model is in evaluation mode
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
class_labels = {
|
19 |
+
0: "non-accident",
|
20 |
+
1: "accident"
|
21 |
+
# Add more labels if you have more classes
|
22 |
+
}
|
23 |
+
|
24 |
+
# Define the inference function
|
25 |
+
def classify(text):
|
26 |
+
|
27 |
+
words = word_tokenize(text)
|
28 |
+
sent = ' '.join(words)
|
29 |
+
print(f'sent : {sent}')
|
30 |
+
encoded_dict = tokenizer.encode_plus(
|
31 |
+
sent, # Sentence to encode.
|
32 |
+
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
|
33 |
+
max_length = 512, # 64 Pad & truncate all sentences.
|
34 |
+
pad_to_max_length = True,
|
35 |
+
return_attention_mask = True, # Construct attn. masks.
|
36 |
+
return_tensors = 'pt', # Return pytorch tensors.
|
37 |
+
)
|
38 |
+
input_ids = encoded_dict['input_ids']
|
39 |
+
attention_masks = encoded_dict['attention_mask']
|
40 |
+
with torch.no_grad(): # Disable gradient calculation
|
41 |
+
outputs = model(input_ids, attention_masks)
|
42 |
+
logits = outputs.logits
|
43 |
+
predictions = torch.argmax(logits, dim=-1)
|
44 |
+
return class_labels[predictions.item()]
|
45 |
+
|
46 |
+
# Set up Gradio interface
|
47 |
+
interface = gr.Interface(fn=classify,
|
48 |
+
inputs="text",
|
49 |
+
outputs="text",
|
50 |
+
title="Accident Classification",
|
51 |
+
description="Enter a text to classify it.")
|
52 |
+
|
53 |
+
# Launch the interface
|
54 |
+
interface.launch()
|