File size: 10,823 Bytes
916ff05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50cd4c6
916ff05
 
50cd4c6
916ff05
 
 
 
 
 
 
 
 
 
 
 
50cd4c6
916ff05
 
50cd4c6
 
916ff05
 
fe6a861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
916ff05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50cd4c6
916ff05
 
 
 
 
 
 
 
 
 
 
 
 
 
fe6a861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
916ff05
fe6a861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
916ff05
 
fe6a861
 
 
 
 
 
 
 
 
 
916ff05
fe6a861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
916ff05
 
 
50cd4c6
916ff05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe6a861
 
916ff05
50cd4c6
916ff05
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import gradio as gr
from definitions import SIZES_PER_CATEGORY
from predict import Predict

predictor = Predict()

def update_main_categories(main):
    if isinstance(SIZES_PER_CATEGORY[main], list):
        return (
            main,
            "",
            "",
            gr.Dropdown(list(SIZES_PER_CATEGORY[main]), label="Size", interactive=True),
        )
    return (
        main,
        "",
        "",
        gr.Dropdown(
            list(SIZES_PER_CATEGORY[main].keys()),
            label="Size",
            interactive=False,
        ),
    )


def update_sub_categories(main, sub):
    if isinstance(SIZES_PER_CATEGORY[main][sub], list):
        return (
            main,
            sub,
            "",
            gr.Dropdown(
                list(SIZES_PER_CATEGORY[main][sub]), label="Size", interactive=True
            ),
        )
    return (
        main,
        sub,
        "",
        gr.Dropdown(
            list(SIZES_PER_CATEGORY[main][sub].keys()),
            label="Size",
            interactive=False,
        ),
    )


def update_sub_sub_categories(main, sub, sub_sub):
    if isinstance(SIZES_PER_CATEGORY[main][sub][sub_sub], list):
        return (
            main,
            sub,
            sub_sub,
            gr.Dropdown(
                list(SIZES_PER_CATEGORY[main][sub][sub_sub]),
                label="Size",
                interactive=True,
            ),
        )
    return (
        main,
        sub,
        sub_sub,
        gr.Dropdown(
            list(SIZES_PER_CATEGORY[main][sub][sub_sub].keys()),
            label="Size",
            interactive=False,
        ),
    )


def submit_form(
    title,
    description,
    condition,
    main_category,
    sub_category,
    sub_sub_category,
    size,
    color,
    hashtags,
    designer_names,
    followerno,
    # user_score,
):
    print(
        f"Title: {title}, Description: {description}, Condition: {condition}, hashtags: {hashtags}, designer: {designer_names}, Main Category: {main_category}, Sub:{sub_category}, sub_sub:{sub_sub_category},  Size: {size}, Color: {color}, Followers: {followerno}"
    )
    # Create dictionary with all the input fields
    input_dict = {
        "title": title,
        "description": description,
        "condition": condition,
        "category_path": ".".join(filter(None, [main_category, sub_category, sub_sub_category])),
        "size": size,
        "color": color,
        "hashtags": hashtags,
        "designer_names": designer_names,
        "followerno": followerno,
        # "user_score": user_score,
    }
    prediction = predictor.predict(input_dict)
    # Round prediction
    return int(prediction)


def add_hashtag(hashtags, new_hashtag):
    if not new_hashtag:
        return hashtags
    current = hashtags.split() if hashtags else []
    if new_hashtag not in current:
        current.append(new_hashtag)
    return " ".join(current)

def remove_hashtag(hashtags, hashtag_to_remove):
    if not hashtags:
        return ""
    current = hashtags.split()
    try:
        current.remove(hashtag_to_remove.strip())
    except ValueError:
        pass
    return " ".join(current)

def add_designer(designers, new_designer):
    if not new_designer:
        return designers
    current = designers.split() if designers else []
    if new_designer not in current:
        current.append(new_designer)
    return " ".join(current)

def remove_designer(designers, designer_to_remove):
    if not designers:
        return ""
    current = designers.split()
    try:
        current.remove(designer_to_remove.strip())
    except ValueError:
        pass
    return " ".join(current)


with gr.Blocks(theme="argilla/argilla-theme", title="Grailed Price Predictor") as demo:
    global size_text_box
    gr.HTML(
        """
    <h1 style="text-align: center;">Grailed Price Predictor</h1>
    <p>Welcome to our Grailed Price Prediction Model! This project, developed for the ID2223 course,
     demonstrates how modern machine learning systems can be effectively implemented using feature stores and serverless computing.
     To get started, simply fill out the form and click "Submit."</p>
    """
    )

    main_category = gr.State("")
    sub_category = gr.State("")
    sub_sub_category = gr.State("")

    with gr.Group():
        title_text_box = gr.Textbox(label="Title")
        description_text_area = gr.TextArea(label="Description")

        condition_dropdown = gr.Dropdown(
            ["is_new", "is_gently_used", "is_used", "is_worn"],
            label="Condition",
            info="The condition of your item.",
            interactive=True,
        )

        with gr.Row():
            with gr.Column():

                @gr.render(inputs=[main_category, sub_category, sub_sub_category])
                def show_categories(main, sub, sub_sub):
                    global size_text_box
                    main_dropdown = gr.Dropdown(
                        list(SIZES_PER_CATEGORY.keys()),
                        label="Main Category",
                        value=main,
                        interactive=True,
                    )
                    main_dropdown.change(
                        update_main_categories,
                        main_dropdown,
                        [main_category, sub_category, sub_sub_category, size_text_box],
                    )

                    if not main or isinstance(SIZES_PER_CATEGORY[main], list):
                        return

                    sub_dropdown = gr.Dropdown(
                        list(SIZES_PER_CATEGORY[main].keys()),
                        label="Sub Category",
                        interactive=True,
                        value=sub,
                    )
                    sub_dropdown.change(
                        update_sub_categories,
                        [main_dropdown, sub_dropdown],
                        [main_category, sub_category, sub_sub_category, size_text_box],
                    )

                    if not sub or isinstance(SIZES_PER_CATEGORY[main][sub], list):
                        return

                    sub_sub_dropdown = gr.Dropdown(
                        list(SIZES_PER_CATEGORY[main][sub].keys()),
                        label="Sub Sub Category",
                        interactive=True,
                        value=sub_sub,
                    )
                    sub_sub_dropdown.change(
                        update_sub_sub_categories,
                        [main_dropdown, sub_dropdown, sub_sub_dropdown],
                        [main_category, sub_category, sub_sub_category, size_text_box],
                    )

            size_text_box = gr.Dropdown(
                label="Size",
                interactive=False,
            )

        color_text_box = gr.Textbox(label="Color")

        with gr.Row():
            with gr.Column():
                hashtags_state = gr.State("")
                new_hashtag_input = gr.Textbox(label="Add Hashtag")
                with gr.Row():
                    add_hashtag_btn = gr.Button("Add Hashtag")
                    clear_hashtags_btn = gr.Button("Clear All Hashtags")
                hashtags_display = gr.Dataframe(
                    headers=["Hashtag"],
                    interactive=False,
                    label="Current Hashtags"
                )
                
                def update_hashtags_display(hashtags):
                    if not hashtags:
                        return []
                    return [[tag] for tag in hashtags.split()]

                add_hashtag_btn.click(
                    add_hashtag,
                    inputs=[hashtags_state, new_hashtag_input],
                    outputs=hashtags_state
                ).then(
                    update_hashtags_display,
                    inputs=[hashtags_state],
                    outputs=hashtags_display
                ).then(
                    lambda: "", 
                    outputs=new_hashtag_input
                )

                # Add clear functionality
                clear_hashtags_btn.click(
                    lambda: "",  # Clear the state
                    outputs=hashtags_state
                ).then(
                    lambda: [],  # Clear the display
                    outputs=hashtags_display
                )

            with gr.Column():
                designers_state = gr.State("")
                new_designer_input = gr.Textbox(label="Add Designer")
                with gr.Row():
                    add_designer_btn = gr.Button("Add Designer")
                    clear_designers_btn = gr.Button("Clear All Designers")
                designers_display = gr.Dataframe(
                    headers=["Designer"],
                    interactive=False,
                    label="Current Designers"
                )

                def update_designers_display(designers):
                    if not designers:
                        return []
                    return [[designer] for designer in designers.split()]

                add_designer_btn.click(
                    add_designer,
                    inputs=[designers_state, new_designer_input],
                    outputs=designers_state
                ).then(
                    update_designers_display,
                    inputs=[designers_state],
                    outputs=designers_display
                ).then(
                    lambda: "",
                    outputs=new_designer_input
                )

                # Add clear functionality
                clear_designers_btn.click(
                    lambda: "",  # Clear the state
                    outputs=designers_state
                ).then(
                    lambda: [],  # Clear the display
                    outputs=designers_display
                )

        with gr.Row():
            followernoNumber = gr.Number(label="Number of Followers")
            # userScoreNumber = gr.Number(label="Your User Score")

        submitButton = gr.Button("Submit")
        
        # Add output component below submit button
        prediction_output = gr.Textbox(label="Predicted Price (in USD)", interactive=False)
        
        submitButton.click(
            submit_form,
            inputs=[
                title_text_box,
                description_text_area,
                condition_dropdown,
                main_category,
                sub_category,
                sub_sub_category,
                size_text_box,
                color_text_box,
                hashtags_state,
                designers_state,
                followernoNumber,
                # userScoreNumber,
            ],
            outputs=prediction_output
        )


if __name__ == "__main__":
    demo.launch()