Spaces:
Sleeping
Sleeping
File size: 10,823 Bytes
916ff05 50cd4c6 916ff05 50cd4c6 916ff05 50cd4c6 916ff05 50cd4c6 916ff05 fe6a861 916ff05 50cd4c6 916ff05 fe6a861 916ff05 fe6a861 916ff05 fe6a861 916ff05 fe6a861 916ff05 50cd4c6 916ff05 fe6a861 916ff05 50cd4c6 916ff05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import gradio as gr
from definitions import SIZES_PER_CATEGORY
from predict import Predict
predictor = Predict()
def update_main_categories(main):
if isinstance(SIZES_PER_CATEGORY[main], list):
return (
main,
"",
"",
gr.Dropdown(list(SIZES_PER_CATEGORY[main]), label="Size", interactive=True),
)
return (
main,
"",
"",
gr.Dropdown(
list(SIZES_PER_CATEGORY[main].keys()),
label="Size",
interactive=False,
),
)
def update_sub_categories(main, sub):
if isinstance(SIZES_PER_CATEGORY[main][sub], list):
return (
main,
sub,
"",
gr.Dropdown(
list(SIZES_PER_CATEGORY[main][sub]), label="Size", interactive=True
),
)
return (
main,
sub,
"",
gr.Dropdown(
list(SIZES_PER_CATEGORY[main][sub].keys()),
label="Size",
interactive=False,
),
)
def update_sub_sub_categories(main, sub, sub_sub):
if isinstance(SIZES_PER_CATEGORY[main][sub][sub_sub], list):
return (
main,
sub,
sub_sub,
gr.Dropdown(
list(SIZES_PER_CATEGORY[main][sub][sub_sub]),
label="Size",
interactive=True,
),
)
return (
main,
sub,
sub_sub,
gr.Dropdown(
list(SIZES_PER_CATEGORY[main][sub][sub_sub].keys()),
label="Size",
interactive=False,
),
)
def submit_form(
title,
description,
condition,
main_category,
sub_category,
sub_sub_category,
size,
color,
hashtags,
designer_names,
followerno,
# user_score,
):
print(
f"Title: {title}, Description: {description}, Condition: {condition}, hashtags: {hashtags}, designer: {designer_names}, Main Category: {main_category}, Sub:{sub_category}, sub_sub:{sub_sub_category}, Size: {size}, Color: {color}, Followers: {followerno}"
)
# Create dictionary with all the input fields
input_dict = {
"title": title,
"description": description,
"condition": condition,
"category_path": ".".join(filter(None, [main_category, sub_category, sub_sub_category])),
"size": size,
"color": color,
"hashtags": hashtags,
"designer_names": designer_names,
"followerno": followerno,
# "user_score": user_score,
}
prediction = predictor.predict(input_dict)
# Round prediction
return int(prediction)
def add_hashtag(hashtags, new_hashtag):
if not new_hashtag:
return hashtags
current = hashtags.split() if hashtags else []
if new_hashtag not in current:
current.append(new_hashtag)
return " ".join(current)
def remove_hashtag(hashtags, hashtag_to_remove):
if not hashtags:
return ""
current = hashtags.split()
try:
current.remove(hashtag_to_remove.strip())
except ValueError:
pass
return " ".join(current)
def add_designer(designers, new_designer):
if not new_designer:
return designers
current = designers.split() if designers else []
if new_designer not in current:
current.append(new_designer)
return " ".join(current)
def remove_designer(designers, designer_to_remove):
if not designers:
return ""
current = designers.split()
try:
current.remove(designer_to_remove.strip())
except ValueError:
pass
return " ".join(current)
with gr.Blocks(theme="argilla/argilla-theme", title="Grailed Price Predictor") as demo:
global size_text_box
gr.HTML(
"""
<h1 style="text-align: center;">Grailed Price Predictor</h1>
<p>Welcome to our Grailed Price Prediction Model! This project, developed for the ID2223 course,
demonstrates how modern machine learning systems can be effectively implemented using feature stores and serverless computing.
To get started, simply fill out the form and click "Submit."</p>
"""
)
main_category = gr.State("")
sub_category = gr.State("")
sub_sub_category = gr.State("")
with gr.Group():
title_text_box = gr.Textbox(label="Title")
description_text_area = gr.TextArea(label="Description")
condition_dropdown = gr.Dropdown(
["is_new", "is_gently_used", "is_used", "is_worn"],
label="Condition",
info="The condition of your item.",
interactive=True,
)
with gr.Row():
with gr.Column():
@gr.render(inputs=[main_category, sub_category, sub_sub_category])
def show_categories(main, sub, sub_sub):
global size_text_box
main_dropdown = gr.Dropdown(
list(SIZES_PER_CATEGORY.keys()),
label="Main Category",
value=main,
interactive=True,
)
main_dropdown.change(
update_main_categories,
main_dropdown,
[main_category, sub_category, sub_sub_category, size_text_box],
)
if not main or isinstance(SIZES_PER_CATEGORY[main], list):
return
sub_dropdown = gr.Dropdown(
list(SIZES_PER_CATEGORY[main].keys()),
label="Sub Category",
interactive=True,
value=sub,
)
sub_dropdown.change(
update_sub_categories,
[main_dropdown, sub_dropdown],
[main_category, sub_category, sub_sub_category, size_text_box],
)
if not sub or isinstance(SIZES_PER_CATEGORY[main][sub], list):
return
sub_sub_dropdown = gr.Dropdown(
list(SIZES_PER_CATEGORY[main][sub].keys()),
label="Sub Sub Category",
interactive=True,
value=sub_sub,
)
sub_sub_dropdown.change(
update_sub_sub_categories,
[main_dropdown, sub_dropdown, sub_sub_dropdown],
[main_category, sub_category, sub_sub_category, size_text_box],
)
size_text_box = gr.Dropdown(
label="Size",
interactive=False,
)
color_text_box = gr.Textbox(label="Color")
with gr.Row():
with gr.Column():
hashtags_state = gr.State("")
new_hashtag_input = gr.Textbox(label="Add Hashtag")
with gr.Row():
add_hashtag_btn = gr.Button("Add Hashtag")
clear_hashtags_btn = gr.Button("Clear All Hashtags")
hashtags_display = gr.Dataframe(
headers=["Hashtag"],
interactive=False,
label="Current Hashtags"
)
def update_hashtags_display(hashtags):
if not hashtags:
return []
return [[tag] for tag in hashtags.split()]
add_hashtag_btn.click(
add_hashtag,
inputs=[hashtags_state, new_hashtag_input],
outputs=hashtags_state
).then(
update_hashtags_display,
inputs=[hashtags_state],
outputs=hashtags_display
).then(
lambda: "",
outputs=new_hashtag_input
)
# Add clear functionality
clear_hashtags_btn.click(
lambda: "", # Clear the state
outputs=hashtags_state
).then(
lambda: [], # Clear the display
outputs=hashtags_display
)
with gr.Column():
designers_state = gr.State("")
new_designer_input = gr.Textbox(label="Add Designer")
with gr.Row():
add_designer_btn = gr.Button("Add Designer")
clear_designers_btn = gr.Button("Clear All Designers")
designers_display = gr.Dataframe(
headers=["Designer"],
interactive=False,
label="Current Designers"
)
def update_designers_display(designers):
if not designers:
return []
return [[designer] for designer in designers.split()]
add_designer_btn.click(
add_designer,
inputs=[designers_state, new_designer_input],
outputs=designers_state
).then(
update_designers_display,
inputs=[designers_state],
outputs=designers_display
).then(
lambda: "",
outputs=new_designer_input
)
# Add clear functionality
clear_designers_btn.click(
lambda: "", # Clear the state
outputs=designers_state
).then(
lambda: [], # Clear the display
outputs=designers_display
)
with gr.Row():
followernoNumber = gr.Number(label="Number of Followers")
# userScoreNumber = gr.Number(label="Your User Score")
submitButton = gr.Button("Submit")
# Add output component below submit button
prediction_output = gr.Textbox(label="Predicted Price (in USD)", interactive=False)
submitButton.click(
submit_form,
inputs=[
title_text_box,
description_text_area,
condition_dropdown,
main_category,
sub_category,
sub_sub_category,
size_text_box,
color_text_box,
hashtags_state,
designers_state,
followernoNumber,
# userScoreNumber,
],
outputs=prediction_output
)
if __name__ == "__main__":
demo.launch()
|