Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import TextStreamer | |
# from peft import AutoPeftModelForCausalLM | |
# from transformers import AutoTokenizer | |
from unsloth import FastLanguageModel | |
from unsloth.chat_templates import get_chat_template | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
model_name_or_path = "samlama111/lora_model" | |
# client = InferenceClient(model_name_or_path) | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = model_name_or_path, | |
max_seq_length = 8192, | |
load_in_4bit = True, | |
# token = "hf_...", # No need since our model is public | |
) | |
tokenizer = get_chat_template( | |
tokenizer, | |
chat_template = "llama-3.1", | |
mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style | |
) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
inputs = tokenizer.apply_chat_template(messages, tokenize = True, add_generation_prompt = True, return_tensors = "pt") | |
text_streamer = TextStreamer(tokenizer) | |
# TODO: Doesn't stream ATM | |
for message in model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 1024, use_cache = True): | |
# Decode the tensor to a string | |
decoded_message = tokenizer.decode(message, skip_special_tokens=True) | |
# Manually getting the response | |
response = decoded_message.split("assistant")[-1].strip() # Extract only the assistant's response | |
print(response) | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |