samlam111
What doesn't kill you makes you stronger
55a88d7
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import TextStreamer
# from peft import AutoPeftModelForCausalLM
# from transformers import AutoTokenizer
from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
model_name_or_path = "samlama111/lora_model"
# client = InferenceClient(model_name_or_path)
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_name_or_path,
max_seq_length = 8192,
load_in_4bit = True,
# token = "hf_...", # No need since our model is public
)
tokenizer = get_chat_template(
tokenizer,
chat_template = "llama-3.1",
mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
inputs = tokenizer.apply_chat_template(messages, tokenize = True, add_generation_prompt = True, return_tensors = "pt")
text_streamer = TextStreamer(tokenizer)
# TODO: Doesn't stream ATM
for message in model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 1024, use_cache = True):
# Decode the tensor to a string
decoded_message = tokenizer.decode(message, skip_special_tokens=True)
# Manually getting the response
response = decoded_message.split("assistant")[-1].strip() # Extract only the assistant's response
print(response)
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()