Spaces:
Runtime error
Runtime error
samlam111
commited on
Commit
·
a2e195e
1
Parent(s):
eae1279
Fixed model not working
Browse files- Not an ideal solution, streaming doesn't work
app.py
CHANGED
@@ -1,5 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -7,8 +11,20 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
7 |
|
8 |
model_name_or_path = "samlama111/lora_model"
|
9 |
|
10 |
-
client = InferenceClient(model_name_or_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def respond(
|
14 |
message,
|
@@ -29,17 +45,19 @@ def respond(
|
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
|
31 |
response = ""
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
-
response += token
|
43 |
yield response
|
44 |
|
45 |
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from unsloth import FastLanguageModel
|
4 |
+
from unsloth.chat_templates import get_chat_template
|
5 |
+
from transformers import TextStreamer
|
6 |
+
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
11 |
|
12 |
model_name_or_path = "samlama111/lora_model"
|
13 |
|
14 |
+
# client = InferenceClient(model_name_or_path)
|
15 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
16 |
+
model_name = model_name_or_path,
|
17 |
+
max_seq_length = 8192,
|
18 |
+
load_in_4bit = True,
|
19 |
+
# token = "hf_...", # No need since our model is public
|
20 |
+
)
|
21 |
|
22 |
+
tokenizer = get_chat_template(
|
23 |
+
tokenizer,
|
24 |
+
chat_template = "llama-3.1",
|
25 |
+
mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style
|
26 |
+
)
|
27 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
28 |
|
29 |
def respond(
|
30 |
message,
|
|
|
45 |
messages.append({"role": "user", "content": message})
|
46 |
|
47 |
response = ""
|
48 |
+
|
49 |
+
inputs = tokenizer.apply_chat_template(messages, tokenize = True, add_generation_prompt = True, return_tensors = "pt")
|
50 |
|
51 |
+
text_streamer = TextStreamer(tokenizer)
|
52 |
+
# TODO: Doesn't stream ATM
|
53 |
+
for message in model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 1024, use_cache = True):
|
54 |
+
# Decode the tensor to a string
|
55 |
+
decoded_message = tokenizer.decode(message, skip_special_tokens=True)
|
56 |
+
|
57 |
+
# Manually getting the response
|
58 |
+
response = decoded_message.split("assistant")[-1].strip() # Extract only the assistant's response
|
59 |
+
print(response)
|
60 |
|
|
|
61 |
yield response
|
62 |
|
63 |
|