samlam111 commited on
Commit
b7c86a5
·
1 Parent(s): 95e2b80

Random trial

Browse files
Files changed (3) hide show
  1. Dockerfile +31 -0
  2. app.py +78 -0
  3. requirements.txt +5 -0
Dockerfile ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use Python 3.10 as base image
2
+ FROM python:3.10-slim
3
+
4
+ # Set working directory
5
+ WORKDIR /app
6
+
7
+ # Install system dependencies
8
+ RUN apt-get update && apt-get install -y \
9
+ build-essential \
10
+ git \
11
+ && rm -rf /var/lib/apt/lists/*
12
+
13
+ # Copy requirements first to leverage Docker cache
14
+ COPY requirements.txt .
15
+
16
+ # Install Python dependencies
17
+ RUN pip install --no-cache-dir -r requirements.txt
18
+
19
+ # Copy the rest of the application
20
+ COPY . .
21
+
22
+ # Expose the port Gradio will run on
23
+ EXPOSE 7860
24
+
25
+ # Set environment variables
26
+ ENV PYTHONUNBUFFERED=1
27
+ ENV GRADIO_SERVER_NAME=0.0.0.0
28
+ ENV GRADIO_SERVER_PORT=7860
29
+
30
+ # Run the application
31
+ CMD ["python", "app.py"]
app.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from transformers import TextStreamer
4
+ from peft import AutoPeftModelForCausalLM
5
+ from transformers import AutoTokenizer
6
+
7
+
8
+ """
9
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
10
+ """
11
+
12
+ model_name_or_path = "samlama111/lora_model"
13
+
14
+ # client = InferenceClient(model_name_or_path)
15
+ model = AutoPeftModelForCausalLM.from_pretrained(
16
+ model_name_or_path, # YOUR MODEL YOU USED FOR TRAINING
17
+ load_in_4bit = True,
18
+ device_map = "auto",
19
+ )
20
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
21
+
22
+ def respond(
23
+ message,
24
+ history: list[tuple[str, str]],
25
+ system_message,
26
+ max_tokens,
27
+ temperature,
28
+ top_p,
29
+ ):
30
+ messages = [{"role": "system", "content": system_message}]
31
+
32
+ for val in history:
33
+ if val[0]:
34
+ messages.append({"role": "user", "content": val[0]})
35
+ if val[1]:
36
+ messages.append({"role": "assistant", "content": val[1]})
37
+
38
+ messages.append({"role": "user", "content": message})
39
+
40
+ response = ""
41
+
42
+ inputs = tokenizer.apply_chat_template(messages, tokenize = True, add_generation_prompt = True, return_tensors = "pt")
43
+
44
+ text_streamer = TextStreamer(tokenizer)
45
+ # TODO: Doesn't stream ATM
46
+ for message in model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 1024, use_cache = True):
47
+ # Decode the tensor to a string
48
+ decoded_message = tokenizer.decode(message, skip_special_tokens=True)
49
+
50
+ # Manually getting the response
51
+ response = decoded_message.split("assistant")[-1].strip() # Extract only the assistant's response
52
+ print(response)
53
+
54
+ yield response
55
+
56
+
57
+ """
58
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
59
+ """
60
+ demo = gr.ChatInterface(
61
+ respond,
62
+ additional_inputs=[
63
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
64
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
65
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
66
+ gr.Slider(
67
+ minimum=0.1,
68
+ maximum=1.0,
69
+ value=0.95,
70
+ step=0.05,
71
+ label="Top-p (nucleus sampling)",
72
+ ),
73
+ ],
74
+ )
75
+
76
+
77
+ if __name__ == "__main__":
78
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ huggingface_hub==0.26.2
2
+ gradio
3
+ https://github.com/bitsandbytes-foundation/bitsandbytes/releases/download/continuous-release_multi-backend-refactor/bitsandbytes-0.44.1.dev0-py3-none-manylinux_2_24_x86_64.whl
4
+ transformers
5
+ peft