Spaces:
Runtime error
Runtime error
step 6
Browse files- app.py +1 -18
- appv2.py +92 -0
- requirements.txt +4 -0
app.py
CHANGED
@@ -63,23 +63,6 @@ def initial_query(image, text):
|
|
63 |
top_3_products = [deepfashion_database[i] for i in top_3_indices]
|
64 |
return top_3_products
|
65 |
|
66 |
-
def send_message(txt, btn):
|
67 |
-
if btn is not None:
|
68 |
-
image = Image.open(btn)
|
69 |
-
image = preprocess_image(image)
|
70 |
-
else:
|
71 |
-
image = None
|
72 |
-
top_3_products = initial_query(image, txt)
|
73 |
-
output_html = generate_output_html(top_3_products)
|
74 |
-
chatbot.append_message("You", txt)
|
75 |
-
chatbot.append_message("AI", output_html)
|
76 |
-
|
77 |
-
|
78 |
-
chatbot = gr.Chatbot([]).style(height=750)
|
79 |
-
txt = gr.Textbox(placeholder="Enter text and press enter, or upload an image", show_label=False)
|
80 |
-
btn = gr.UploadButton("π", file_types=["image", "video", "audio"])
|
81 |
-
|
82 |
-
gr.Interface(send_message, inputs=[txt, btn], outputs=chatbot).launch()
|
83 |
@app.post("/initial_query/")
|
84 |
async def api_initial_query(text: str, image: UploadFile = File(None)):
|
85 |
if image is not None:
|
@@ -89,4 +72,4 @@ async def api_initial_query(text: str, image: UploadFile = File(None)):
|
|
89 |
else:
|
90 |
image = None
|
91 |
top_3_products = initial_query(image, text)
|
92 |
-
return {"top_3_products": top_3_products}
|
|
|
63 |
top_3_products = [deepfashion_database[i] for i in top_3_indices]
|
64 |
return top_3_products
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
@app.post("/initial_query/")
|
67 |
async def api_initial_query(text: str, image: UploadFile = File(None)):
|
68 |
if image is not None:
|
|
|
72 |
else:
|
73 |
image = None
|
74 |
top_3_products = initial_query(image, text)
|
75 |
+
return {"top_3_products": top_3_products}
|
appv2.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from PIL import Image
|
3 |
+
from torchvision import transforms
|
4 |
+
from transformers import CLIPProcessor, CLIPModel
|
5 |
+
from datasets import load_dataset
|
6 |
+
import torch
|
7 |
+
import io
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Load the pre-trained CLIP model and its tokenizer
|
12 |
+
model_name = "openai/clip-vit-base-patch32"
|
13 |
+
processor = CLIPProcessor.from_pretrained(model_name)
|
14 |
+
model = CLIPModel.from_pretrained(model_name)
|
15 |
+
|
16 |
+
# Load the fashion product images dataset from Hugging Face
|
17 |
+
dataset = load_dataset("ashraq/fashion-product-images-small")
|
18 |
+
deepfashion_database = dataset["train"]
|
19 |
+
|
20 |
+
def preprocess_image(image):
|
21 |
+
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
|
22 |
+
preprocess = transforms.Compose([
|
23 |
+
transforms.Resize(224),
|
24 |
+
transforms.CenterCrop(224),
|
25 |
+
transforms.ToTensor(),
|
26 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
27 |
+
])
|
28 |
+
return preprocess(pil_image).unsqueeze(0)
|
29 |
+
|
30 |
+
def encode_text(text):
|
31 |
+
inputs = processor(text=[text], return_tensors="pt", padding=True, truncation=True)
|
32 |
+
return inputs
|
33 |
+
|
34 |
+
def encode_image(image):
|
35 |
+
inputs = processor(images=[image], return_tensors="pt", padding=True, truncation=True)
|
36 |
+
return inputs
|
37 |
+
|
38 |
+
def calculate_similarities(query_image, query_text):
|
39 |
+
query_image_features = model.get_image_features(query_image)
|
40 |
+
query_text_features = model.get_text_features(query_text)
|
41 |
+
|
42 |
+
similarities = []
|
43 |
+
for product in deepfashion_database:
|
44 |
+
product_image_features = torch.Tensor(product["image_features"])
|
45 |
+
product_text_features = torch.Tensor(product["text_features"])
|
46 |
+
|
47 |
+
image_similarity = torch.nn.CosineSimilarity(dim=-1)(query_image_features, product_image_features)
|
48 |
+
text_similarity = torch.nn.CosineSimilarity(dim=-1)(query_text_features, product_text_features)
|
49 |
+
|
50 |
+
similarity_score = image_similarity * text_similarity
|
51 |
+
similarities.append(similarity_score)
|
52 |
+
|
53 |
+
return similarities
|
54 |
+
|
55 |
+
def initial_query(image, text):
|
56 |
+
query_image = encode_image(image)
|
57 |
+
query_text = encode_text(text)
|
58 |
+
|
59 |
+
similarities = calculate_similarities(query_image, query_text)
|
60 |
+
sorted_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)
|
61 |
+
top_3_indices = sorted_indices[:3]
|
62 |
+
|
63 |
+
top_3_products = [deepfashion_database[i] for i in top_3_indices]
|
64 |
+
return top_3_products
|
65 |
+
|
66 |
+
def send_message(txt, btn):
|
67 |
+
if btn is not None:
|
68 |
+
image = Image.open(btn)
|
69 |
+
image = preprocess_image(image)
|
70 |
+
else:
|
71 |
+
image = None
|
72 |
+
top_3_products = initial_query(image, txt)
|
73 |
+
output_html = generate_output_html(top_3_products)
|
74 |
+
chatbot.append_message("You", txt)
|
75 |
+
chatbot.append_message("AI", output_html)
|
76 |
+
|
77 |
+
|
78 |
+
chatbot = gr.Chatbot([]).style(height=750)
|
79 |
+
txt = gr.Textbox(placeholder="Enter text and press enter, or upload an image", show_label=False)
|
80 |
+
btn = gr.UploadButton("π", file_types=["image", "video", "audio"])
|
81 |
+
|
82 |
+
gr.Interface(send_message, inputs=[txt, btn], outputs=chatbot).launch()
|
83 |
+
@app.post("/initial_query/")
|
84 |
+
async def api_initial_query(text: str, image: UploadFile = File(None)):
|
85 |
+
if image is not None:
|
86 |
+
image_content = await image.read()
|
87 |
+
image = Image.open(io.BytesIO(image_content))
|
88 |
+
image = preprocess_image(image)
|
89 |
+
else:
|
90 |
+
image = None
|
91 |
+
top_3_products = initial_query(image, text)
|
92 |
+
return {"top_3_products": top_3_products}
|
requirements.txt
CHANGED
@@ -3,3 +3,7 @@ torchvision
|
|
3 |
Pillow
|
4 |
gradio
|
5 |
transformers
|
|
|
|
|
|
|
|
|
|
3 |
Pillow
|
4 |
gradio
|
5 |
transformers
|
6 |
+
fastapi
|
7 |
+
uvicorn
|
8 |
+
fastapi
|
9 |
+
datasets
|