Spaces:
Running
Running
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import JSONResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
from backend.utils import generate_completions | |
from backend.utils.handlers import handle_generation_request, INSTRUCTION_TEMPLATES | |
from backend import config | |
from typing import Union, List, Literal, Optional | |
import logging | |
import json | |
from backend.cache import cache | |
logging.basicConfig(level=logging.INFO) | |
app = FastAPI() | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # Allows all origins | |
allow_credentials=True, | |
allow_methods=["*"], # Allows all methods | |
allow_headers=["*"], # Allows all headers | |
) | |
class Message(BaseModel): | |
role: Literal["user", "assistant"] | |
content: str | |
class GenerationRequest(BaseModel): | |
user_id: int | |
query: Union[str, List[Message]] | |
native_language: Optional[str] = None | |
target_language: Optional[str] = None | |
proficiency: Optional[str] = None | |
class MetadataRequest(BaseModel): | |
query: str | |
async def root(): | |
return {"message": "Welcome to the AI Learning Assistant API!"} | |
async def extract_metadata(data: MetadataRequest): | |
logging.info(f"Query: {data.query}") | |
try: | |
response_str = await cache.get_or_set( | |
(str(data.query), config.language_metadata_extraction_prompt), | |
generate_completions.get_completions, | |
data.query, | |
config.language_metadata_extraction_prompt | |
) | |
metadata_dict = json.loads(response_str) | |
return JSONResponse( | |
content={ | |
"data": metadata_dict, | |
"type": "language_metadata", | |
"status": "success" | |
}, | |
status_code=200 | |
) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def generate_curriculum(data: GenerationRequest): | |
return await handle_generation_request( | |
data=data, | |
mode="curriculum", | |
instructions_template=INSTRUCTION_TEMPLATES["curriculum"] | |
) | |
async def generate_flashcards(data: GenerationRequest): | |
return await handle_generation_request( | |
data=data, | |
mode="flashcards", | |
instructions_template=INSTRUCTION_TEMPLATES["flashcards"] | |
) | |
async def generate_exercises(data: GenerationRequest): | |
return await handle_generation_request( | |
data=data, | |
mode="exercises", | |
instructions_template=INSTRUCTION_TEMPLATES["exercises"] | |
) | |
async def generate_simulation(data: GenerationRequest): | |
return await handle_generation_request( | |
data=data, | |
mode="simulation", | |
instructions_template=INSTRUCTION_TEMPLATES["simulation"] | |
) |