samu's picture
curriculum and logging
dcefa44
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from backend.utils import generate_completions
from backend import config
from backend.database import get_db_connection
import psycopg2
from psycopg2.extras import RealDictCursor
from typing import Union, List, Literal, Optional
import logging
import json
logging.basicConfig(level=logging.INFO)
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# Dependency to get database connection
async def get_db():
conn = await get_db_connection()
try:
yield conn
finally:
conn.close()
# class GenerationRequest(BaseModel):
# user_id: int
# query: str
class Message(BaseModel):
role: Literal["user", "assistant"]
content: str
class GenerationRequest(BaseModel):
user_id: int
query: Union[str, List[Message]]
class MetadataRequest(BaseModel):
query: str
# Global metadata variables
native_language: Optional[str] = None
target_language: Optional[str] = None
proficiency: Optional[str] = None
@app.get("/")
async def root():
return {"message": "Welcome to the AI Learning Assistant API!"}
@app.post("/extract/metadata")
async def extract_metadata(data: MetadataRequest):
try:
response_str = await generate_completions.get_completions(
data.query,
config.language_metadata_extraction_prompt
)
metadata_dict = json.loads(response_str)
# Update globals for other endpoints
globals()['native_language'] = metadata_dict.get('native_language', 'unknown')
globals()['target_language'] = metadata_dict.get('target_language', 'unknown')
globals()['proficiency'] = metadata_dict.get('proficiency_level', 'unknown')
return JSONResponse(
content={
"data": metadata_dict,
"type": "language_metadata",
"status": "success"
},
status_code=200
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate/flashcards")
async def generate_flashcards(data: GenerationRequest):
try:
# Use previously extracted metadata
instructions = (
config.flashcard_mode_instructions
.replace("{native_language}", native_language or "unknown")
.replace("{target_language}", target_language or "unknown")
.replace("{proficiency}", proficiency or "unknown")
)
response = await generate_completions.get_completions(
data.query,
instructions
)
return JSONResponse(
content={
"data": response,
"type": "flashcards",
"status": "success"
},
status_code=200
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate/exercises")
async def generate_exercises(data: GenerationRequest):
try:
# Use previously extracted metadata
instructions = (
config.exercise_mode_instructions
.replace("{native_language}", native_language or "unknown")
.replace("{target_language}", target_language or "unknown")
.replace("{proficiency}", proficiency or "unknown")
)
response = await generate_completions.get_completions(
data.query,
instructions
)
return JSONResponse(
content={
"data": response,
"type": "exercises",
"status": "success"
},
status_code=200
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate/simulation")
async def generate_simulation(data: GenerationRequest):
try:
# Use previously extracted metadata
instructions = (
config.simulation_mode_instructions
.replace("{native_language}", native_language or "unknown")
.replace("{target_language}", target_language or "unknown")
.replace("{proficiency}", proficiency or "unknown")
)
response = await generate_completions.get_completions(
data.query,
instructions
)
return JSONResponse(
content={
"data": response,
"type": "simulation",
"status": "success"
},
status_code=200
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))