samueldomdey commited on
Commit
cbdef56
·
1 Parent(s): ade329d

first commit

Browse files
Files changed (1) hide show
  1. app.py +73 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # summary function - test for single gradio function interfrace
2
+ def bulk_function(filename):
3
+ # Create class for data preparation
4
+ class SimpleDataset:
5
+ def __init__(self, tokenized_texts):
6
+ self.tokenized_texts = tokenized_texts
7
+
8
+ def __len__(self):
9
+ return len(self.tokenized_texts["input_ids"])
10
+
11
+ def __getitem__(self, idx):
12
+ return {k: v[idx] for k, v in self.tokenized_texts.items()}
13
+
14
+ # load tokenizer and model, create trainer
15
+ model_name = "j-hartmann/emotion-english-distilroberta-base"
16
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
17
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
18
+ trainer = Trainer(model=model)
19
+
20
+ # read file lines
21
+ with open("/content/YOUR_FILENAME.csv", "r") as f:
22
+ lines = f.readlines()
23
+ # expects unnamed:0 or index, col name -> strip both
24
+ lines_s = [item.split("\n")[0].split(",")[-1] for item in lines][1:]
25
+ print(lines_s[1:])
26
+
27
+
28
+ # Tokenize texts and create prediction data set
29
+ tokenized_texts = tokenizer(lines_s[1:],truncation=True,padding=True)
30
+ pred_dataset = SimpleDataset(tokenized_texts)
31
+
32
+ # Run predictions
33
+ predictions = trainer.predict(pred_dataset)
34
+
35
+ # Transform predictions to labels
36
+ preds = predictions.predictions.argmax(-1)
37
+ labels = pd.Series(preds).map(model.config.id2label)
38
+ scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)
39
+ # scores raw
40
+ temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))
41
+
42
+ # work in progress
43
+ # container
44
+ anger = []
45
+ disgust = []
46
+ fear = []
47
+ joy = []
48
+ neutral = []
49
+ sadness = []
50
+ surprise = []
51
+
52
+ # extract scores (as many entries as exist in pred_texts)
53
+ for i in range(len(lines_s[1:])):
54
+ anger.append(temp[i][0])
55
+ disgust.append(temp[i][1])
56
+ fear.append(temp[i][2])
57
+ joy.append(temp[i][3])
58
+ neutral.append(temp[i][4])
59
+ sadness.append(temp[i][5])
60
+ surprise.append(temp[i][6])
61
+
62
+ # define df
63
+ df = pd.DataFrame(list(zip(lines_s[1:],preds,labels,scores, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=['text','pred','label','score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
64
+
65
+ # save results to csv
66
+ YOUR_FILENAME = "YOUR_FILENAME_EMOTIONS_gradio.csv" # name your output file
67
+ df.to_csv(YOUR_FILENAME)
68
+
69
+ # return dataframe for space output
70
+ return df
71
+ # launch space
72
+ gr.Interface(bulk_function, [gr.inputs.File(file_count="single", type="file", label="str", optional=False),], "dataframe",
73
+ ).launch()