samueldomdey commited on
Commit
fba9f25
·
1 Parent(s): fce3dc7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -17
app.py CHANGED
@@ -2,7 +2,14 @@ import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
5
- # summary function - test for single gradio function interface
 
 
 
 
 
 
 
6
  # summary function - test for single gradio function interfrace
7
  def bulk_function(filename):
8
  # Create class for data preparation
@@ -16,24 +23,11 @@ def bulk_function(filename):
16
  def __getitem__(self, idx):
17
  return {k: v[idx] for k, v in self.tokenized_texts.items()}
18
 
19
- # load tokenizer and model, create trainer
20
- model_name = "j-hartmann/emotion-english-distilroberta-base"
21
- tokenizer = AutoTokenizer.from_pretrained(model_name)
22
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
23
- trainer = Trainer(model=model)
24
- print(filename, type(filename))
25
- print(filename.name)
26
-
27
-
28
-
29
  # read file lines
30
  with open(filename.name, "r") as f:
31
  lines = f.readlines()
32
  # expects unnamed:0 or index, col name -> strip both
33
- lines_s = [item.split("\n")[0].split(",")[-1] for item in lines]
34
- print(lines_s)
35
- print(filename)
36
-
37
 
38
  # Tokenize texts and create prediction data set
39
  tokenized_texts = tokenizer(lines_s,truncation=True,padding=True)
@@ -77,7 +71,7 @@ def bulk_function(filename):
77
  df.to_csv(YOUR_FILENAME)
78
 
79
  # return dataframe for space output
80
- return df
81
 
82
- gr.Interface(bulk_function, [gr.inputs.File(file_count="single", type="file", label="str", optional=False),],"dataframe",
83
  ).launch(debug=True)
 
2
  import pandas as pd
3
  import numpy as np
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
5
+
6
+
7
+ # load tokenizer and model, create trainer
8
+ model_name = "j-hartmann/emotion-english-distilroberta-base"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
11
+ trainer = Trainer(model=model)
12
+
13
  # summary function - test for single gradio function interfrace
14
  def bulk_function(filename):
15
  # Create class for data preparation
 
23
  def __getitem__(self, idx):
24
  return {k: v[idx] for k, v in self.tokenized_texts.items()}
25
 
 
 
 
 
 
 
 
 
 
 
26
  # read file lines
27
  with open(filename.name, "r") as f:
28
  lines = f.readlines()
29
  # expects unnamed:0 or index, col name -> strip both
30
+ lines_s = [item.split("\n")[0].split(",")[-1] for item in lines][1:]
 
 
 
31
 
32
  # Tokenize texts and create prediction data set
33
  tokenized_texts = tokenizer(lines_s,truncation=True,padding=True)
 
71
  df.to_csv(YOUR_FILENAME)
72
 
73
  # return dataframe for space output
74
+ return YOUR_FILENAME
75
 
76
+ gr.Interface(bulk_function, [gr.inputs.File(file_count="single", type="file", label="str", optional=False),],["file"],
77
  ).launch(debug=True)