import functools import io import json import logging import math import os import pathlib import random import beartype import einops.layers.torch import gradio as gr import matplotlib import numpy as np import open_clip import requests import saev.nn import torch from jaxtyping import Float, jaxtyped from PIL import Image, ImageDraw from torch import Tensor from torchvision import transforms log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s" logging.basicConfig(level=logging.INFO, format=log_format) logger = logging.getLogger("app.py") #################### # Global Constants # #################### DEBUG = False """Whether we are debugging.""" n_sae_latents = 5 """Number of SAE latents to show.""" n_sae_examples = 4 """Number of SAE examples per latent to show.""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") """Hardware accelerator, if any.""" vit_ckpt = "ViT-B-16/openai" """CLIP checkpoint.""" n_patches_per_img: int = 196 """Number of patches per image in vit_ckpt.""" max_frequency = 1e-1 """Maximum frequency. Any feature that fires more than this is ignored.""" CWD = pathlib.Path(__file__).parent r2_url = "https://pub-289086e849214430853bc87bd8964988.r2.dev/" colormap = matplotlib.colormaps.get_cmap("plasma") logger.info("Set global constants.") ########### # Helpers # ########### @beartype.beartype def get_cache_dir() -> str: """ Get cache directory from environment variables, defaulting to the current working directory (.) Returns: A path to a cache directory (might not exist yet). """ cache_dir = "" for var in ("HF_HOME", "HF_HUB_CACHE"): cache_dir = cache_dir or os.environ.get(var, "") return cache_dir or "." @beartype.beartype def load_model(fpath: str | pathlib.Path, *, device: str = "cpu") -> torch.nn.Module: """ Loads a linear layer from disk. """ with open(fpath, "rb") as fd: kwargs = json.loads(fd.readline().decode()) buffer = io.BytesIO(fd.read()) model = torch.nn.Linear(**kwargs) state_dict = torch.load(buffer, weights_only=True, map_location=device) model.load_state_dict(state_dict) model = model.to(device) return model @beartype.beartype @functools.lru_cache(maxsize=512) def get_dataset_img(i: int) -> Image.Image: return Image.open(requests.get(r2_url + image_fpaths[i], stream=True).raw) @beartype.beartype def make_img( img: Image.Image, patches: Float[Tensor, " n_patches"], *, upper: int | None = None, ) -> Image.Image: # Resize to 256x256 and crop to 224x224 resize_size_px = (512, 512) resize_w_px, resize_h_px = resize_size_px crop_size_px = (448, 448) crop_w_px, crop_h_px = crop_size_px crop_coords_px = ( (resize_w_px - crop_w_px) // 2, (resize_h_px - crop_h_px) // 2, (resize_w_px + crop_w_px) // 2, (resize_h_px + crop_h_px) // 2, ) img = img.resize(resize_size_px).crop(crop_coords_px) img = add_highlights(img, patches.numpy(), upper=upper, opacity=0.5) return img ########## # Models # ########## @jaxtyped(typechecker=beartype.beartype) class SplitClip(torch.nn.Module): def __init__(self, *, n_end_layers: int): super().__init__() if vit_ckpt.startswith("hf-hub:"): clip, _ = open_clip.create_model_from_pretrained( vit_ckpt, cache_dir=get_cache_dir() ) else: arch, ckpt = vit_ckpt.split("/") clip, _ = open_clip.create_model_from_pretrained( arch, pretrained=ckpt, cache_dir=get_cache_dir() ) model = clip.visual model.proj = None model.output_tokens = True # type: ignore self.vit = model.eval() assert not isinstance(self.vit, open_clip.timm_model.TimmModel) self.n_end_layers = n_end_layers @staticmethod def _expand_token(token, batch_size: int): return token.view(1, 1, -1).expand(batch_size, -1, -1) def forward_start(self, x: Float[Tensor, "batch channels width height"]): x = self.vit.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] # class embeddings and positional embeddings x = torch.cat( [self._expand_token(self.vit.class_embedding, x.shape[0]).to(x.dtype), x], dim=1, ) # shape = [*, grid ** 2 + 1, width] x = x + self.vit.positional_embedding.to(x.dtype) x = self.vit.patch_dropout(x) x = self.vit.ln_pre(x) for r in self.vit.transformer.resblocks[: -self.n_end_layers]: x = r(x) return x def forward_end(self, x: Float[Tensor, "batch n_patches dim"]): for r in self.vit.transformer.resblocks[-self.n_end_layers :]: x = r(x) x = self.vit.ln_post(x) pooled, _ = self.vit._global_pool(x) if self.vit.proj is not None: pooled = pooled @ self.vit.proj return pooled # ViT split_vit = SplitClip(n_end_layers=1) split_vit = split_vit.to(device) logger.info("Initialized CLIP ViT.") # Linear classifier clf_ckpt_fpath = CWD / "ckpts" / "clf.pt" clf = load_model(clf_ckpt_fpath) clf = clf.to(device).eval() logger.info("Loaded linear classifier.") # SAE sae_ckpt_fpath = CWD / "ckpts" / "sae.pt" sae = saev.nn.load(sae_ckpt_fpath.as_posix()) sae.to(device).eval() logger.info("Loaded SAE.") ############ # Datasets # ############ human_transform = transforms.Compose([ transforms.Resize((448,), interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop((448, 448)), transforms.ToTensor(), einops.layers.torch.Rearrange("channels width height -> width height channels"), ]) arch, ckpt = vit_ckpt.split("/") _, vit_transform = open_clip.create_model_from_pretrained( arch, pretrained=ckpt, cache_dir=get_cache_dir() ) with open(CWD / "data" / "image_fpaths.json") as fd: image_fpaths = json.load(fd) with open(CWD / "data" / "image_labels.json") as fd: image_labels = json.load(fd) logger.info("Loaded all datasets.") ############# # Variables # ############# @beartype.beartype def load_tensor(path: str | pathlib.Path) -> Tensor: return torch.load(path, weights_only=True, map_location="cpu") top_img_i = load_tensor(CWD / "data" / "top_img_i.pt") top_values = load_tensor(CWD / "data" / "top_values_uint8.pt") sparsity = load_tensor(CWD / "data" / "sparsity.pt") mask = torch.ones((sae.cfg.d_sae), dtype=bool) mask = mask & (sparsity < max_frequency) ############# # Inference # ############# @beartype.beartype def get_image(image_i: int) -> list[Image.Image | int]: image = get_dataset_img(image_i) image = human_transform(image) return [ Image.fromarray((image * 255).to(torch.uint8).numpy()), image_labels[image_i], ] @beartype.beartype def get_random_class_image(cls: int) -> Image.Image: indices = [i for i, tgt in enumerate(image_labels) if tgt == cls] i = random.choice(indices) image = get_dataset_img(i) image = human_transform(image) return Image.fromarray((image * 255).to(torch.uint8).numpy()) @torch.inference_mode def get_sae_examples( image_i: int, patches: list[int] ) -> list[None | Image.Image | int]: """ Given a particular cell, returns some highlighted images showing what feature fires most on this cell. """ if not patches: return [None] * n_sae_latents * n_sae_examples + [-1] * n_sae_latents logger.info("Getting SAE examples for patches %s.", patches) img = get_dataset_img(image_i) x = vit_transform(img)[None, ...].to(device) x_BPD = split_vit.forward_start(x) # Need to add 1 to account for [CLS] token. vit_acts_MD = x_BPD[0, [p + 1 for p in patches]].to(device) _, f_x_MS, _ = sae(vit_acts_MD) f_x_S = f_x_MS.sum(axis=0) latents = torch.argsort(f_x_S, descending=True).cpu() latents = latents[mask[latents]][:n_sae_latents].tolist() images = [] for latent in latents: img_patch_pairs, seen_i_im = [], set() for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]): if i_im in seen_i_im: continue example_img = get_dataset_img(i_im) img_patch_pairs.append((example_img, values_p)) seen_i_im.add(i_im) # How to scale values. upper = None if top_values[latent].numel() > 0: upper = top_values[latent].max().item() latent_images = [ make_img(img, patches.to(float), upper=upper) for img, patches in img_patch_pairs[:n_sae_examples] ] while len(latent_images) < n_sae_examples: latent_images += [None] images.extend(latent_images) return images + latents @torch.inference_mode def get_pred_dist(i: int) -> dict[int, float]: img = get_dataset_img(i) x = vit_transform(img)[None, ...].to(device) x_BPD = split_vit.forward_start(x) x_BD = split_vit.forward_end(x_BPD) logits_BC = clf(x_BD) probs = torch.nn.functional.softmax(logits_BC[0], dim=0).cpu().tolist() return {i: prob for i, prob in enumerate(probs)} @torch.inference_mode def get_modified_dist( image_i: int, patches: list[int], latent1: int, latent2: int, latent3: int, value1: float, value2: float, value3: float, ) -> dict[int, float]: img = get_dataset_img(image_i) x = vit_transform(img)[None, ...].to(device) x_BPD = split_vit.forward_start(x) cls_B1D, x_BPD = x_BPD[:, :1, :], x_BPD[:, 1:, :] x_hat_BPD, f_x_BPS, _ = sae(x_BPD) err_BPD = x_BPD - x_hat_BPD values = torch.tensor( [ unscaled(value, top_values[latent].max().item()) for value, latent in [ (value1, latent1), (value2, latent2), (value3, latent3), ] ], device=device, ) patches = torch.tensor(patches, device=device) latents = torch.tensor([latent1, latent2, latent3], device=device) f_x_BPS[:, patches[:, None], latents[None, :]] = values # Reproduce the SAE forward pass after f_x modified_x_hat_BPD = ( einops.einsum( f_x_BPS, sae.W_dec, "batch patches d_sae, d_sae d_vit -> batch patches d_vit", ) + sae.b_dec ) modified_BPD = torch.cat([cls_B1D, err_BPD + modified_x_hat_BPD], axis=1) modified_BD = split_vit.forward_end(modified_BPD) logits_BC = clf(modified_BD) probs = torch.nn.functional.softmax(logits_BC[0], dim=0).cpu().tolist() return {i: prob for i, prob in enumerate(probs)} @beartype.beartype def unscaled(x: float | int, max_obs: float | int) -> float: """Scale from [-20, 20] to [20 * -max_obs, 20 * max_obs].""" return map_range(x, (-20.0, 20.0), (-20.0 * max_obs, 20.0 * max_obs)) @beartype.beartype def map_range( x: float | int, domain: tuple[float | int, float | int], range: tuple[float | int, float | int], ): a, b = domain c, d = range if not (a <= x <= b): raise ValueError(f"x={x:.3f} must be in {[a, b]}.") return c + (x - a) * (d - c) / (b - a) @jaxtyped(typechecker=beartype.beartype) def add_highlights( img: Image.Image, patches: Float[np.ndarray, " n_patches"], *, upper: int | None = None, opacity: float = 0.9, ) -> Image.Image: if not len(patches): return img iw_np, ih_np = int(math.sqrt(len(patches))), int(math.sqrt(len(patches))) iw_px, ih_px = img.size pw_px, ph_px = iw_px // iw_np, ih_px // ih_np assert iw_np * ih_np == len(patches) # Create a transparent overlay overlay = Image.new("RGBA", img.size, (0, 0, 0, 0)) draw = ImageDraw.Draw(overlay) colors = (colormap(patches / (upper + 1e-9))[:, :3] * 255).astype(np.uint8) for p, (val, color) in enumerate(zip(patches, colors)): assert upper is not None val /= upper + 1e-9 x_np, y_np = p % iw_np, p // ih_np draw.rectangle( [ (x_np * pw_px, y_np * ph_px), (x_np * pw_px + pw_px, y_np * ph_px + ph_px), ], fill=(*color, int(opacity * val * 255)), ) # Composite the original image and the overlay return Image.alpha_composite(img.convert("RGBA"), overlay) ############# # Interface # ############# with gr.Blocks() as demo: image_number = gr.Number(label="Test Example", precision=0) class_number = gr.Number(label="Test Class", precision=0) input_image = gr.Image(label="Input Image") get_input_image_btn = gr.Button(value="Get Input Image") get_input_image_btn.click( get_image, inputs=[image_number], outputs=[input_image, class_number], api_name="get-image", ) get_random_class_image_btn = gr.Button(value="Get Random Class Image") get_input_image_btn.click( get_random_class_image, inputs=[image_number], outputs=[input_image], api_name="get-random-class-image", ) patch_numbers = gr.CheckboxGroup( label="Image Patch", choices=list(range(n_patches_per_img)) ) top_latent_numbers = gr.CheckboxGroup(label="Top Latents") top_latent_numbers = [ gr.Number(label=f"Top Latents #{j + 1}", precision=0) for j in range(n_sae_latents) ] sae_example_images = [ gr.Image(label=f"Latent #{j}, Example #{i + 1}") for i in range(n_sae_examples) for j in range(n_sae_latents) ] get_sae_examples_btn = gr.Button(value="Get SAE Examples") get_sae_examples_btn.click( get_sae_examples, inputs=[image_number, patch_numbers], outputs=sae_example_images + top_latent_numbers, api_name="get-sae-examples", concurrency_limit=16, ) pred_dist = gr.Label(label="Pred. Dist.") get_pred_dist_btn = gr.Button(value="Get Pred. Distribution") get_pred_dist_btn.click( get_pred_dist, inputs=[image_number], outputs=[pred_dist], api_name="get-preds", ) latent_numbers = [gr.Number(label=f"Latent {i + 1}", precision=0) for i in range(3)] value_sliders = [ gr.Slider(label=f"Value {i + 1}", minimum=-10, maximum=10) for i in range(3) ] get_modified_dist_btn = gr.Button(value="Get Modified Label") get_modified_dist_btn.click( get_modified_dist, inputs=[image_number, patch_numbers] + latent_numbers + value_sliders, outputs=[pred_dist], api_name="get-modified", concurrency_limit=16, ) if __name__ == "__main__": demo.launch()