Samuel Stevens
update colors
423e800
raw
history blame
3.42 kB
import base64
import functools
import io
import logging
import random
import beartype
import einops.layers.torch
import numpy as np
import requests
from jaxtyping import Integer, UInt8, jaxtyped
from PIL import Image
from torch import Tensor
from torchvision.transforms import v2
logger = logging.getLogger("data.py")
R2_URL = "https://pub-129e98faed1048af94c4d4119ea47be7.r2.dev"
@beartype.beartype
@functools.lru_cache(maxsize=512)
def get_img(i: int) -> Image.Image:
fpath = f"/images/ADE_val_{i + 1:08}.jpg"
url = R2_URL + fpath
logger.info("Getting image from '%s'.", url)
return Image.open(requests.get(url, stream=True).raw)
@beartype.beartype
@functools.lru_cache(maxsize=512)
def get_seg(i: int) -> Image.Image:
fpath = f"/annotations/ADE_val_{i + 1:08}.png"
url = R2_URL + fpath
logger.info("Getting annotations from '%s'.", url)
return Image.open(requests.get(url, stream=True).raw)
@jaxtyped(typechecker=beartype.beartype)
def make_colors() -> UInt8[np.ndarray, "n 3"]:
values = (0, 51, 102, 153, 204, 255)
colors = []
for r in values:
for g in values:
for b in values:
colors.append((r, g, b))
# Fixed seed
random.Random(42).shuffle(colors)
colors = np.array(colors, dtype=np.uint8)
# Fixed colors. Must be synced with Segmentation.elm.
colors[2] = np.array([201, 249, 255], dtype=np.uint8)
colors[4] = np.array([151, 204, 4], dtype=np.uint8)
colors[13] = np.array([104, 139, 88], dtype=np.uint8)
colors[16] = np.array([54, 48, 32], dtype=np.uint8)
colors[21] = np.array([120, 202, 210], dtype=np.uint8) # water
colors[26] = np.array([45, 125, 210], dtype=np.uint8)
colors[29] = np.array([116, 142, 84], dtype=np.uint8)
colors[46] = np.array([238, 185, 2], dtype=np.uint8)
colors[52] = np.array([88, 91, 86], dtype=np.uint8)
colors[60] = np.array([72, 99, 156], dtype=np.uint8) # river
colors[72] = np.array([76, 46, 5], dtype=np.uint8)
colors[94] = np.array([12, 15, 10], dtype=np.uint8)
return colors
colors = make_colors()
resize_transform = v2.Compose([
v2.Resize((512, 512), interpolation=v2.InterpolationMode.NEAREST),
v2.CenterCrop((448, 448)),
])
@beartype.beartype
def to_sized(img_raw: Image.Image) -> Image.Image:
return resize_transform(img_raw)
u8_transform = v2.Compose([
v2.ToImage(),
einops.layers.torch.Rearrange("() width height -> width height"),
])
@beartype.beartype
def to_u8(seg_raw: Image.Image) -> UInt8[Tensor, "width height"]:
return u8_transform(seg_raw)
@jaxtyped(typechecker=beartype.beartype)
def u8_to_img(map: UInt8[Tensor, "width height"]) -> Image.Image:
map = map.cpu().numpy()
width, height = map.shape
colored = np.zeros((width, height, 3), dtype=np.uint8)
for i, color in enumerate(colors):
colored[map == i + 1, :] = color
return Image.fromarray(colored)
@jaxtyped(typechecker=beartype.beartype)
def to_classes(map: Integer[Tensor, "width height"]) -> list[int]:
# Integer is any signed or unsigned int: https://docs.kidger.site/jaxtyping/api/array/#dtype
return list(set(map.view(-1).tolist()))
@beartype.beartype
def img_to_base64(img: Image.Image) -> str:
buf = io.BytesIO()
img.save(buf, format="webp")
b64 = base64.b64encode(buf.getvalue())
s64 = b64.decode("utf8")
return "data:image/webp;base64," + s64