Samuel Stevens
Use cloudflare for ade20k images
0ab58fa
raw
history blame
2.95 kB
import base64
import functools
import io
import logging
import random
import beartype
import einops.layers.torch
import numpy as np
import requests
from jaxtyping import UInt8, jaxtyped
from PIL import Image
from torch import Tensor
from torchvision.transforms import v2
logger = logging.getLogger("data.py")
R2_URL = "https://pub-129e98faed1048af94c4d4119ea47be7.r2.dev"
@beartype.beartype
@functools.lru_cache(maxsize=512)
def get_image(i: int) -> Image.Image:
fpath = f"/images/ADE_val_{i + 1:08}.jpg"
url = R2_URL + fpath
logger.info("Getting image from '%s'.", url)
return Image.open(requests.get(url, stream=True).raw)
@beartype.beartype
@functools.lru_cache(maxsize=512)
def get_seg(i: int) -> Image.Image:
fpath = f"/annotations/ADE_val_{i + 1:08}.png"
url = R2_URL + fpath
logger.info("Getting annotations from '%s'.", url)
return Image.open(requests.get(url, stream=True).raw)
@jaxtyped(typechecker=beartype.beartype)
def make_colors() -> UInt8[np.ndarray, "n 3"]:
values = (0, 51, 102, 153, 204, 255)
colors = []
for r in values:
for g in values:
for b in values:
colors.append((r, g, b))
# Fixed seed
random.Random(42).shuffle(colors)
colors = np.array(colors, dtype=np.uint8)
# Fixed colors for example 3122
colors[2] = np.array([201, 249, 255], dtype=np.uint8)
colors[4] = np.array([151, 204, 4], dtype=np.uint8)
colors[13] = np.array([104, 139, 88], dtype=np.uint8)
colors[16] = np.array([54, 48, 32], dtype=np.uint8)
colors[26] = np.array([45, 125, 210], dtype=np.uint8)
colors[46] = np.array([238, 185, 2], dtype=np.uint8)
colors[52] = np.array([88, 91, 86], dtype=np.uint8)
colors[72] = np.array([76, 46, 5], dtype=np.uint8)
colors[94] = np.array([12, 15, 10], dtype=np.uint8)
return colors
colors = make_colors()
resize_transform = v2.Compose([
v2.Resize((512, 512), interpolation=v2.InterpolationMode.NEAREST),
v2.CenterCrop((448, 448)),
])
@beartype.beartype
def to_sized(img_raw: Image.Image) -> Image.Image:
return resize_transform(img_raw)
u8_transform = v2.Compose([
v2.ToImage(),
einops.layers.torch.Rearrange("() width height -> width height"),
])
@beartype.beartype
def to_u8(seg_raw: Image.Image) -> UInt8[Tensor, "width height"]:
return u8_transform(seg_raw)
@jaxtyped(typechecker=beartype.beartype)
def u8_to_img(map: UInt8[Tensor, "width height"]) -> Image.Image:
map = map.cpu().numpy()
width, height = map.shape
colored = np.zeros((width, height, 3), dtype=np.uint8)
for i, color in enumerate(colors):
colored[map == i + 1, :] = color
return Image.fromarray(colored)
@beartype.beartype
def img_to_base64(img: Image.Image) -> str:
buf = io.BytesIO()
img.save(buf, format="webp")
b64 = base64.b64encode(buf.getvalue())
s64 = b64.decode("utf8")
return "data:image/webp;base64," + s64