Upload 3 files
Browse files- README.md +14 -14
- app.py +20 -60
- requirements.txt +5 -3
README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
1 |
+
|
2 |
+
# مشروع استخراج النصوص من الصور
|
3 |
+
|
4 |
+
### الوصف
|
5 |
+
تطبيق يعتمد على EasyOCR لتحليل النصوص من الصور باستخدام Gradio.
|
6 |
+
|
7 |
+
### المتطلبات
|
8 |
+
- Python 3.7+
|
9 |
+
- مكتبة EasyOCR و Gradio مثبتة.
|
10 |
+
|
11 |
+
### كيفية الاستخدام
|
12 |
+
1. قم بتشغيل المشروع.
|
13 |
+
2. ارفع صورة تحتوي على نصوص.
|
14 |
+
3. احصل على النصوص المستخرجة مباشرةً.
|
app.py
CHANGED
@@ -1,64 +1,24 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
import gradio as gr
|
3 |
+
import easyocr
|
4 |
+
|
5 |
+
# تعريف وظيفة لتحليل النصوص من الصور
|
6 |
+
def extract_text_from_image(image_path):
|
7 |
+
reader = easyocr.Reader(['ar', 'en']) # يدعم العربية والإنجليزية
|
8 |
+
result = reader.readtext(image_path, detail=0)
|
9 |
+
return " ".join(result)
|
10 |
+
|
11 |
+
# إنشاء واجهة باستخدام Gradio
|
12 |
+
def process_image(image):
|
13 |
+
text = extract_text_from_image(image)
|
14 |
+
return text
|
15 |
+
|
16 |
+
interface = gr.Interface(
|
17 |
+
fn=process_image,
|
18 |
+
inputs=gr.Image(type="filepath"),
|
19 |
+
outputs="text",
|
20 |
+
title="استخراج النصوص من الصور"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
|
|
|
23 |
if __name__ == "__main__":
|
24 |
+
interface.launch()
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
torch
|
|
|
|
|
|
1 |
+
|
2 |
+
easyocr
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
gradio
|