samvb1002 commited on
Commit
500768c
·
verified ·
1 Parent(s): 9d3c8fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -15
app.py CHANGED
@@ -1,26 +1,17 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
- from PIL import Image
4
  import pytesseract
5
 
 
6
  huggingface-cli login
7
 
8
- # Initialize chat model
9
- chat_model = pipeline("text-generation", model="gpt2") # عدّل اسم النموذج حسب الحاجة
10
-
11
- # Use a pipeline as a high-level helper
12
- from transformers import pipeline
13
-
14
- messages = [
15
- {"role": "user", "content": "Who are you?"},
16
- ]
17
- pipe = pipeline("text-generation", model="meta-llama/Llama-3.3-70B-Instruct")
18
- pipe(messages)
19
- # Load model directly
20
- from transformers import AutoTokenizer, AutoModelForCausalLM
21
 
 
22
  tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.3-70B-Instruct")
23
  model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.3-70B-Instruct")
 
24
  # Chat function
25
  def chat_fn(history, user_input):
26
  conversation = {"history": history, "user": user_input}
@@ -54,4 +45,5 @@ with gr.Blocks() as demo:
54
  msg.submit(chat_fn, [chatbot, msg], [chatbot, msg])
55
  clear.click(lambda: None, None, chatbot)
56
 
 
57
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
 
3
  import pytesseract
4
 
5
+ # Login to huggingface CLI
6
  huggingface-cli login
7
 
8
+ # Initialize chat model (You can change the model here)
9
+ chat_model = pipeline("text-generation", model="gpt2") # You can switch to any model of your choice
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # Initialize LLaMA model for more advanced instruction-following tasks
12
  tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.3-70B-Instruct")
13
  model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.3-70B-Instruct")
14
+
15
  # Chat function
16
  def chat_fn(history, user_input):
17
  conversation = {"history": history, "user": user_input}
 
45
  msg.submit(chat_fn, [chatbot, msg], [chatbot, msg])
46
  clear.click(lambda: None, None, chatbot)
47
 
48
+ # Launch the Gradio interface
49
  demo.launch()