samvb1002 commited on
Commit
eabd726
·
verified ·
1 Parent(s): f945901

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -1,19 +1,21 @@
1
  import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
  import pytesseract
4
 
5
- # Load the tokenizer and model
 
 
 
6
  tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat")
7
  model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat")
8
 
9
- # Use a pipeline as a high-level helper
10
- chat_model = pipeline("text-generation", model=model, tokenizer=tokenizer)
11
-
12
  # Chat function
13
  def chat_fn(history, user_input):
14
  conversation = {"history": history, "user": user_input}
15
- response = chat_model(user_input, max_length=50, num_return_sequences=1)
16
- conversation["bot"] = response[0]['generated_text']
 
 
17
  history.append((user_input, conversation["bot"]))
18
  return history, ""
19
 
 
1
  import gradio as gr
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
3
  import pytesseract
4
 
5
+ # Use a pipeline as a high-level helper
6
+ from transformers import pipeline
7
+
8
+ # Initialize tokenizer and model
9
  tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat")
10
  model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat")
11
 
 
 
 
12
  # Chat function
13
  def chat_fn(history, user_input):
14
  conversation = {"history": history, "user": user_input}
15
+ # Generate a response using the model
16
+ input_ids = tokenizer.encode(user_input, return_tensors="pt")
17
+ response = model.generate(input_ids=input_ids, max_length=50)
18
+ conversation["bot"] = tokenizer.decode(response[0], skip_special_tokens=True)
19
  history.append((user_input, conversation["bot"]))
20
  return history, ""
21