Commit
·
6efeab4
1
Parent(s):
e9675cf
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
"""
|
4 |
+
multiply.py: Multiply two numbers using repeated fourier
|
5 |
+
transform based addition.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
|
9 |
+
from qiskit import Aer, execute
|
10 |
+
from math import pi
|
11 |
+
|
12 |
+
def createInputState(qc, reg, n, pie):
|
13 |
+
"""
|
14 |
+
Computes the quantum Fourier transform of reg, one qubit at
|
15 |
+
a time.
|
16 |
+
Apply one Hadamard gate to the nth qubit of the quantum register reg, and
|
17 |
+
then apply repeated phase rotations with parameters being pi divided by
|
18 |
+
increasing powers of two.
|
19 |
+
"""
|
20 |
+
qc.h(reg[n])
|
21 |
+
for i in range(0, n):
|
22 |
+
qc.cp(pie / float(2**(i + 1)), reg[n - (i + 1)], reg[n])
|
23 |
+
|
24 |
+
|
25 |
+
def evolveQFTState(qc, reg_a, reg_b, n, pie, factor):
|
26 |
+
"""
|
27 |
+
Evolves the state |F(ψ(reg_a))> to |F(ψ(reg_a+reg_b))> using the quantum
|
28 |
+
Fourier transform conditioned on the qubits of the reg_b.
|
29 |
+
Apply repeated phase rotations with parameters being pi divided by
|
30 |
+
increasing powers of two.
|
31 |
+
"""
|
32 |
+
l = len(reg_b)
|
33 |
+
for i in range(0, n + 1):
|
34 |
+
if (n - i) > l - 1:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
qc.cp(factor*pie / float(2**(i)), reg_b[n - i], reg_a[n])
|
38 |
+
|
39 |
+
|
40 |
+
def inverseQFT(qc, reg, n, pie):
|
41 |
+
"""
|
42 |
+
Performs the inverse quantum Fourier transform on a register reg.
|
43 |
+
Apply repeated phase rotations with parameters being pi divided by
|
44 |
+
decreasing powers of two, and then apply a Hadamard gate to the nth qubit
|
45 |
+
of the register reg.
|
46 |
+
"""
|
47 |
+
for i in range(0, n):
|
48 |
+
qc.cp(-1 * pie / float(2**(n - i)), reg[i], reg[n])
|
49 |
+
qc.h(reg[n])
|
50 |
+
|
51 |
+
|
52 |
+
def add(reg_a, reg_b, circ, factor):
|
53 |
+
"""
|
54 |
+
Add two quantum registers reg_a and reg_b, and store the result in
|
55 |
+
reg_a.
|
56 |
+
"""
|
57 |
+
pie = pi
|
58 |
+
n = len(reg_a) - 1
|
59 |
+
|
60 |
+
# Compute the Fourier transform of register a
|
61 |
+
for i in range(0, n + 1):
|
62 |
+
createInputState(circ, reg_a, n - i, pie)
|
63 |
+
# Add the two numbers by evolving the Fourier transform F(ψ(reg_a))>
|
64 |
+
# to |F(ψ(reg_a+reg_b))>
|
65 |
+
for i in range(0, n + 1):
|
66 |
+
evolveQFTState(circ, reg_a, reg_b, n - i, pie, factor)
|
67 |
+
# Compute the inverse Fourier transform of register a
|
68 |
+
for i in range(0, n + 1):
|
69 |
+
inverseQFT(circ, reg_a, i, pie)
|
70 |
+
|
71 |
+
|
72 |
+
# Take two numbers as user input in binary form
|
73 |
+
multiplicand_in = input("Enter the multiplicand.")
|
74 |
+
l1 = len(multiplicand_in)
|
75 |
+
multiplier_in = input("Enter the multiplier.")
|
76 |
+
l2 = len(multiplier_in)
|
77 |
+
# Make sure multiplicand_in holds the larger number
|
78 |
+
if l2 > l1:
|
79 |
+
multiplier_in, multiplicand_in = multiplicand_in, multiplier_in
|
80 |
+
l2, l1 = l1, l2
|
81 |
+
|
82 |
+
multiplicand = QuantumRegister(l1)
|
83 |
+
multiplier = QuantumRegister(l2)
|
84 |
+
accumulator = QuantumRegister(l1 + l2)
|
85 |
+
cl = ClassicalRegister(l1 + l2)
|
86 |
+
d = QuantumRegister(1)
|
87 |
+
|
88 |
+
circ = QuantumCircuit(accumulator, multiplier, multiplicand,
|
89 |
+
d, cl, name="qc")
|
90 |
+
|
91 |
+
circ.x(d)
|
92 |
+
# Store bit strings in quantum registers
|
93 |
+
for i in range(l1):
|
94 |
+
if multiplicand_in[i] == '1':
|
95 |
+
circ.x(multiplicand[l1 - i - 1])
|
96 |
+
|
97 |
+
for i in range(l2):
|
98 |
+
if multiplier_in[i] == '1':
|
99 |
+
circ.x(multiplier[l1 - i - 1])
|
100 |
+
|
101 |
+
multiplier_str = '1'
|
102 |
+
# Perform repeated addition until the multiplier
|
103 |
+
# is zero
|
104 |
+
while(int(multiplier_str) != 0):
|
105 |
+
add(accumulator, multiplicand, circ, 1)
|
106 |
+
add(multiplier, d, circ, -1)
|
107 |
+
for i in range(len(multiplier)):
|
108 |
+
circ.measure(multiplier[i], cl[i])
|
109 |
+
result = execute(circ, backend=Aer.get_backend('qasm_simulator'),
|
110 |
+
shots=2).result().get_counts(circ.name)
|
111 |
+
multiplier_str = list(result.keys())[0]
|
112 |
+
|
113 |
+
circ.measure(accumulator, cl)
|
114 |
+
result = execute(circ, backend=Aer.get_backend('qasm_simulator'),
|
115 |
+
shots=2).result().get_counts(circ.name)
|
116 |
+
|
117 |
+
print(result)
|