Commit
·
a87f7b2
1
Parent(s):
a011025
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,4 @@
|
|
1 |
-
|
2 |
-
# pip install qiskit
|
3 |
-
# pip install qiskit-aer
|
4 |
-
"""
|
5 |
-
multiply.py: Multiply two numbers using repeated fourier
|
6 |
-
transform based addition.
|
7 |
-
"""
|
8 |
-
|
9 |
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
|
10 |
from qiskit import Aer, execute
|
11 |
from math import pi
|
@@ -22,7 +15,6 @@ def createInputState(qc, reg, n, pie):
|
|
22 |
for i in range(0, n):
|
23 |
qc.cp(pie / float(2**(i + 1)), reg[n - (i + 1)], reg[n])
|
24 |
|
25 |
-
|
26 |
def evolveQFTState(qc, reg_a, reg_b, n, pie, factor):
|
27 |
"""
|
28 |
Evolves the state |F(ψ(reg_a))> to |F(ψ(reg_a+reg_b))> using the quantum
|
@@ -37,7 +29,6 @@ def evolveQFTState(qc, reg_a, reg_b, n, pie, factor):
|
|
37 |
else:
|
38 |
qc.cp(factor*pie / float(2**(i)), reg_b[n - i], reg_a[n])
|
39 |
|
40 |
-
|
41 |
def inverseQFT(qc, reg, n, pie):
|
42 |
"""
|
43 |
Performs the inverse quantum Fourier transform on a register reg.
|
@@ -49,7 +40,6 @@ def inverseQFT(qc, reg, n, pie):
|
|
49 |
qc.cp(-1 * pie / float(2**(n - i)), reg[i], reg[n])
|
50 |
qc.h(reg[n])
|
51 |
|
52 |
-
|
53 |
def add(reg_a, reg_b, circ, factor):
|
54 |
"""
|
55 |
Add two quantum registers reg_a and reg_b, and store the result in
|
@@ -69,50 +59,46 @@ def add(reg_a, reg_b, circ, factor):
|
|
69 |
for i in range(0, n + 1):
|
70 |
inverseQFT(circ, reg_a, i, pie)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
circ.x(
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
add(multiplier, d, circ, -1)
|
108 |
-
for i in range(len(multiplier)):
|
109 |
-
circ.measure(multiplier[i], cl[i])
|
110 |
result = execute(circ, backend=Aer.get_backend('qasm_simulator'),
|
111 |
-
|
112 |
-
|
|
|
113 |
|
114 |
-
|
115 |
-
result = execute(circ, backend=Aer.get_backend('qasm_simulator'),
|
116 |
-
shots=2).result().get_counts(circ.name)
|
117 |
|
118 |
-
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
|
3 |
from qiskit import Aer, execute
|
4 |
from math import pi
|
|
|
15 |
for i in range(0, n):
|
16 |
qc.cp(pie / float(2**(i + 1)), reg[n - (i + 1)], reg[n])
|
17 |
|
|
|
18 |
def evolveQFTState(qc, reg_a, reg_b, n, pie, factor):
|
19 |
"""
|
20 |
Evolves the state |F(ψ(reg_a))> to |F(ψ(reg_a+reg_b))> using the quantum
|
|
|
29 |
else:
|
30 |
qc.cp(factor*pie / float(2**(i)), reg_b[n - i], reg_a[n])
|
31 |
|
|
|
32 |
def inverseQFT(qc, reg, n, pie):
|
33 |
"""
|
34 |
Performs the inverse quantum Fourier transform on a register reg.
|
|
|
40 |
qc.cp(-1 * pie / float(2**(n - i)), reg[i], reg[n])
|
41 |
qc.h(reg[n])
|
42 |
|
|
|
43 |
def add(reg_a, reg_b, circ, factor):
|
44 |
"""
|
45 |
Add two quantum registers reg_a and reg_b, and store the result in
|
|
|
59 |
for i in range(0, n + 1):
|
60 |
inverseQFT(circ, reg_a, i, pie)
|
61 |
|
62 |
+
def quantum_multiply(multiplicand_in, multiplier_in):
|
63 |
+
multiplicand_in = multiplicand_in.strip()
|
64 |
+
multiplier_in = multiplier_in.strip()
|
65 |
+
|
66 |
+
multiplicand = QuantumRegister(len(multiplicand_in))
|
67 |
+
multiplier = QuantumRegister(len(multiplier_in))
|
68 |
+
accumulator = QuantumRegister(len(multiplicand_in) + len(multiplier_in))
|
69 |
+
cl = ClassicalRegister(len(multiplicand_in) + len(multiplier_in))
|
70 |
+
d = QuantumRegister(1)
|
71 |
+
|
72 |
+
circ = QuantumCircuit(accumulator, multiplier, multiplicand,
|
73 |
+
d, cl, name="qc")
|
74 |
+
|
75 |
+
# Store bit strings in quantum registers
|
76 |
+
for i in range(len(multiplicand_in)):
|
77 |
+
if multiplicand_in[i] == '1':
|
78 |
+
circ.x(multiplicand[len(multiplicand_in) - i - 1])
|
79 |
+
|
80 |
+
for i in range(len(multiplier_in)):
|
81 |
+
if multiplier_in[i] == '1':
|
82 |
+
circ.x(multiplier[len(multiplicand_in) - i - 1])
|
83 |
+
|
84 |
+
multiplier_str = '1'
|
85 |
+
# Perform repeated addition until the multiplier
|
86 |
+
# is zero
|
87 |
+
while(int(multiplier_str) != 0):
|
88 |
+
add(accumulator, multiplicand, circ, 1)
|
89 |
+
add(multiplier, d, circ, -1)
|
90 |
+
for i in range(len(multiplier)):
|
91 |
+
circ.measure(multiplier[i], cl[i])
|
92 |
+
result = execute(circ, backend=Aer.get_backend('qasm_simulator'),
|
93 |
+
shots=2).result().get_counts(circ.name)
|
94 |
+
multiplier_str = list(result.keys())[0]
|
95 |
+
|
96 |
+
circ.measure(accumulator, cl)
|
|
|
|
|
|
|
97 |
result = execute(circ, backend=Aer.get_backend('qasm_simulator'),
|
98 |
+
shots=2).result().get_counts(circ.name)
|
99 |
+
|
100 |
+
return list(result.keys())[0]
|
101 |
|
102 |
+
iface = gr.Interface(quantum_multiply, inputs=["text", "text"], outputs="text")
|
|
|
|
|
103 |
|
104 |
+
iface.launch()
|