File size: 20,654 Bytes
12a89b7 f652e83 12a89b7 f652e83 12a89b7 a0e200f 12a89b7 810882a 12a89b7 a0e200f 12a89b7 a0e200f 12a89b7 a0e200f 12a89b7 a0e200f 12a89b7 a0e200f 12a89b7 0e6dbe2 12a89b7 0e6dbe2 12a89b7 0e6dbe2 12a89b7 0e6dbe2 12a89b7 0e6dbe2 12a89b7 0e6dbe2 12a89b7 0e6dbe2 12a89b7 dde32e5 12a89b7 e444d56 12a89b7 18c6797 12a89b7 4bb46a1 12a89b7 4bb46a1 12a89b7 dde32e5 12a89b7 c85e0b2 e444d56 12a89b7 0c80b43 12a89b7 c85e0b2 12a89b7 a0e200f 4bb46a1 12a89b7 0e6dbe2 12a89b7 91e3e31 12a89b7 810882a 12a89b7 4dd18db 12a89b7 4dd18db 12a89b7 4dd18db 12a89b7 4dd18db 12a89b7 4dd18db 12a89b7 4dd18db 12a89b7 4dd18db 12a89b7 0c80b43 12a89b7 0e6dbe2 a0e200f 12a89b7 0c80b43 12a89b7 0c80b43 12a89b7 0c80b43 12a89b7 0c80b43 12a89b7 0c80b43 12a89b7 0c80b43 12a89b7 0e6dbe2 0c80b43 12a89b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
# import re
# import fitz # PyMuPDF
# from pdfminer.high_level import extract_text
# from pdfminer.layout import LAParams
# import language_tool_python
# from typing import List, Dict, Any, Tuple
# from collections import Counter
# import json
# import traceback
# import io
# import tempfile
# import os
# import gradio as gr
# # Set JAVA_HOME environment variable
# os.environ['JAVA_HOME'] = '/usr/lib/jvm/java-11-openjdk-amd64'
# # ------------------------------
# # Analysis Functions
# # ------------------------------
# # def extract_pdf_text_by_page(file) -> List[str]:
# # """Extracts text from a PDF file, page by page, using PyMuPDF."""
# # if isinstance(file, str):
# # with fitz.open(file) as doc:
# # return [page.get_text("text") for page in doc]
# # else:
# # with fitz.open(stream=file.read(), filetype="pdf") as doc:
# # return [page.get_text("text") for page in doc]
# def extract_pdf_text(file) -> str:
# """Extracts full text from a PDF file using PyMuPDF."""
# try:
# doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file)
# full_text = ""
# for page_number in range(len(doc)):
# page = doc[page_number]
# words = page.get_text("word")
# full_text += words
# print(full_text)
# doc.close()
# print(f"Total extracted text length: {len(full_text)} characters.")
# return full_text
# except Exception as e:
# print(f"Error extracting text from PDF: {e}")
# return ""
# def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]:
# """Checks for the presence of required terms in the text."""
# return {term: term.lower() in full_text.lower() for term in search_terms}
# def label_authors(full_text: str) -> str:
# """Label authors in the text with 'Authors:' if not already labeled."""
# author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)"
# match = re.search(author_line_regex, full_text, re.MULTILINE)
# if match:
# authors = match.group(1).strip()
# return full_text.replace(authors, f"Authors: {authors}")
# return full_text
# def check_metadata(full_text: str) -> Dict[str, Any]:
# """Check for metadata elements."""
# return {
# "author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', full_text)),
# "list_of_authors": bool(re.search(r'Authors?:', full_text, re.IGNORECASE)),
# "keywords_list": bool(re.search(r'Keywords?:', full_text, re.IGNORECASE)),
# "word_count": len(full_text.split()) or "Missing"
# }
# def check_disclosures(full_text: str) -> Dict[str, bool]:
# """Check for disclosure statements."""
# search_terms = [
# "author contributions statement",
# "conflict of interest statement",
# "ethics statement",
# "funding statement",
# "data access statement"
# ]
# return check_text_presence(full_text, search_terms)
# def check_figures_and_tables(full_text: str) -> Dict[str, bool]:
# """Check for figures and tables."""
# return {
# "figures_with_citations": bool(re.search(r'Figure \d+.*?citation', full_text, re.IGNORECASE)),
# "figures_legends": bool(re.search(r'Figure \d+.*?legend', full_text, re.IGNORECASE)),
# "tables_legends": bool(re.search(r'Table \d+.*?legend', full_text, re.IGNORECASE))
# }
# def check_references(full_text: str) -> Dict[str, Any]:
# """Check for references."""
# return {
# "old_references": bool(re.search(r'\b19[0-9]{2}\b', full_text)),
# "citations_in_abstract": bool(re.search(r'\b(citation|reference)\b', full_text[:1000], re.IGNORECASE)),
# "reference_count": len(re.findall(r'\[.*?\]', full_text)),
# "self_citations": bool(re.search(r'Self-citation', full_text, re.IGNORECASE))
# }
# def check_structure(full_text: str) -> Dict[str, bool]:
# """Check document structure."""
# return {
# "imrad_structure": all(section in full_text for section in ["Introduction", "Methods", "Results", "Discussion"]),
# "abstract_structure": "structured abstract" in full_text.lower()
# }
# def check_language_issues(full_text: str) -> Dict[str, Any]:
# """Check for language issues using LanguageTool and additional regex patterns."""
# try:
# language_tool = language_tool_python.LanguageTool('en-US')
# matches = language_tool.check(full_text)
# issues = []
# # Process LanguageTool matches
# for match in matches:
# # Ignore issues with rule_id 'EN_SPLIT_WORDS_HYPHEN'
# if match.ruleId == "EN_SPLIT_WORDS_HYPHEN":
# continue
# issues.append({
# "message": match.message,
# "context": match.context.strip(),
# "suggestions": match.replacements[:3] if match.replacements else [],
# "category": match.category,
# "rule_id": match.ruleId,
# "offset": match.offset,
# "length": match.errorLength,
# "coordinates": [],
# "page": 0
# })
# print(f"Total language issues found: {len(issues)}")
# # -----------------------------------
# # Additions: Regex-based Issue Detection
# # -----------------------------------
# # Define regex pattern to find words immediately followed by '[' without space
# regex_pattern = r'\b(\w+)\[(\d+)\]'
# regex_matches = list(re.finditer(regex_pattern, full_text))
# print(f"Total regex issues found: {len(regex_matches)}")
# # Process regex matches
# for match in regex_matches:
# word = match.group(1)
# number = match.group(2)
# start = match.start()
# end = match.end()
# issues.append({
# "message": f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.",
# "context": full_text[max(match.start() - 30, 0):min(match.end() + 30, len(full_text))].strip(),
# "suggestions": [f"{word} [{number}]", f"{word} [`{number}`]", f"{word} [number {number}]"],
# "category": "Formatting",
# "rule_id": "SPACE_BEFORE_BRACKET",
# "offset": match.start(),
# "length": match.end() - match.start(),
# "coordinates": [],
# "page": 0
# })
# print(f"Total combined issues found: {len(issues)}")
# return {
# "total_issues": len(issues),
# "issues": issues
# }
# except Exception as e:
# print(f"Error checking language issues: {e}")
# return {"error": str(e)}
# def check_language(full_text: str) -> Dict[str, Any]:
# """Check language quality."""
# return {
# "plain_language": bool(re.search(r'plain language summary', full_text, re.IGNORECASE)),
# "readability_issues": False, # Placeholder for future implementation
# "language_issues": check_language_issues(full_text)
# }
# def check_figure_order(full_text: str) -> Dict[str, Any]:
# """Check if figures are referred to in sequential order."""
# figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)'
# figure_references = re.findall(figure_pattern, full_text, re.IGNORECASE)
# figure_numbers = sorted(set(int(num) for num in figure_references))
# is_sequential = all(a + 1 == b for a, b in zip(figure_numbers, figure_numbers[1:]))
# if figure_numbers:
# expected_figures = set(range(1, max(figure_numbers) + 1))
# missing_figures = list(expected_figures - set(figure_numbers))
# else:
# missing_figures = None
# duplicates = [num for num, count in Counter(figure_references).items() if count > 1]
# duplicate_numbers = [int(num) for num in duplicates]
# not_mentioned = list(set(figure_references) - set(duplicates))
# return {
# "sequential_order": is_sequential,
# "figure_count": len(figure_numbers),
# "missing_figures": missing_figures,
# "figure_order": figure_numbers,
# "duplicate_references": duplicates,
# "not_mentioned": not_mentioned
# }
# def check_reference_order(full_text: str) -> Dict[str, Any]:
# """Check if references in the main body text are in order."""
# reference_pattern = r'\[(\d+)\]'
# references = re.findall(reference_pattern, full_text)
# ref_numbers = [int(ref) for ref in references]
# max_ref = 0
# out_of_order = []
# for i, ref in enumerate(ref_numbers):
# if ref > max_ref + 1:
# out_of_order.append((i+1, ref))
# max_ref = max(max_ref, ref)
# all_refs = set(range(1, max_ref + 1))
# used_refs = set(ref_numbers)
# missing_refs = list(all_refs - used_refs)
# return {
# "max_reference": max_ref,
# "out_of_order": out_of_order,
# "missing_references": missing_refs,
# "is_ordered": len(out_of_order) == 0 and len(missing_refs) == 0
# }
# def highlight_issues_in_pdf(file, language_matches: List[Dict[str, Any]]) -> bytes:
# """
# Highlights language issues in the PDF and returns the annotated PDF as bytes.
# This function maps LanguageTool matches to specific words in the PDF
# and highlights those words.
# """
# try:
# # Open the PDF
# doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file)
# # print(f"Opened PDF with {len(doc)} pages.")
# # print(language_matches)
# # Extract words with positions from each page
# word_list = [] # List of tuples: (page_number, word, x0, y0, x1, y1)
# for page_number in range(len(doc)):
# page = doc[page_number]
# print(page.get_text("words"))
# words = page.get_text("words") # List of tuples: (x0, y0, x1, y1, "word", block_no, line_no, word_no)
# for w in words:
# # print(w)
# word_text = w[4]
# # **Fix:** Insert a space before '[' to ensure "globally [2]" instead of "globally[2]"
# # if '[' in word_text:
# # word_text = word_text.replace('[', ' [')
# word_list.append((page_number, word_text, w[0], w[1], w[2], w[3]))
# # print(f"Total words extracted: {len(word_list)}")
# # Concatenate all words to form the full text
# concatenated_text=""
# concatenated_text = " ".join([w[1] for w in word_list])
# # print(f"Concatenated text length: {concatenated_text} characters.")
# # Find "Abstract" section and set the processing start point
# abstract_start = concatenated_text.lower().find("abstract")
# abstract_offset = 0 if abstract_start == -1 else abstract_start
# # Find "References" section and exclude from processing
# references_start = concatenated_text.lower().find("references")
# references_offset = len(concatenated_text) if references_start == -1 else references_start
# # Iterate over each language issue
# for idx, issue in enumerate(language_matches, start=1):
# offset = issue["offset"] # offset+line_no-1
# length = issue["length"]
# # Skip issues in the references section
# if offset < abstract_offset or offset >= references_offset:
# continue
# error_text = concatenated_text[offset:offset+length]
# print(f"\nIssue {idx}: '{error_text}' at offset {offset} with length {length}")
# # Find the words that fall within the error span
# current_pos = 0
# target_words = []
# for word in word_list:
# word_text = word[1]
# word_length = len(word_text) + 1 # +1 for the space
# if current_pos + word_length > offset and current_pos < offset + length:
# target_words.append(word)
# current_pos += word_length
# if not target_words:
# # print("No matching words found for this issue.")
# continue
# initial_x = target_words[0][2]
# initial_y = target_words[0][3]
# final_x = target_words[len(target_words)-1][4]
# final_y = target_words[len(target_words)-1][5]
# issue["coordinates"] = [initial_x, initial_y, final_x, final_y]
# issue["page"] = target_words[0][0] + 1
# # Add highlight annotations to the target words
# print()
# print("issue", issue)
# print("error text", error_text)
# print(target_words)
# print()
# for target in target_words:
# page_num, word_text, x0, y0, x1, y1 = target
# page = doc[page_num]
# # Define a rectangle around the word with some padding
# rect = fitz.Rect(x0 - 1, y0 - 1, x1 + 1, y1 + 1)
# # Add a highlight annotation
# highlight = page.add_highlight_annot(rect)
# highlight.set_colors(stroke=(1, 1, 0)) # Yellow color
# highlight.update()
# # print(f"Highlighted '{word_text}' on page {page_num + 1} at position ({x0}, {y0}, {x1}, {y1})")
# # Save annotated PDF to bytes
# byte_stream = io.BytesIO()
# doc.save(byte_stream)
# annotated_pdf_bytes = byte_stream.getvalue()
# doc.close()
# # Save annotated PDF locally for verification
# with open("annotated_temp.pdf", "wb") as f:
# f.write(annotated_pdf_bytes)
# # print("Annotated PDF saved as 'annotated_temp.pdf' for manual verification.")
# return language_matches, annotated_pdf_bytes
# except Exception as e:
# print(f"Error in highlighting PDF: {e}")
# return b""
# # ------------------------------
# # Main Analysis Function
# # ------------------------------
# # server/gradio_client.py
# def analyze_pdf(filepath: str) -> Tuple[Dict[str, Any], bytes]:
# """Analyzes the PDF for language issues and returns results and annotated PDF."""
# try:
# full_text = extract_pdf_text(filepath)
# if not full_text:
# return {"error": "Failed to extract text from PDF."}, None
# # Create the results structure
# results = {
# "issues": [], # Initialize as empty array
# "regex_checks": {
# "metadata": check_metadata(full_text),
# "disclosures": check_disclosures(full_text),
# "figures_and_tables": check_figures_and_tables(full_text),
# "references": check_references(full_text),
# "structure": check_structure(full_text),
# "figure_order": check_figure_order(full_text),
# "reference_order": check_reference_order(full_text)
# }
# }
# # Handle language issues
# language_issues = check_language_issues(full_text)
# if "error" in language_issues:
# return {"error": language_issues["error"]}, None
# issues = language_issues.get("issues", [])
# if issues:
# language_matches, annotated_pdf = highlight_issues_in_pdf(filepath, issues)
# results["issues"] = language_matches # This is already an array from check_language_issues
# return results, annotated_pdf
# else:
# # Keep issues as empty array if none found
# return results, None
# except Exception as e:
# return {"error": str(e)}, None
# # ------------------------------
# # Gradio Interface
# # ------------------------------
# def process_upload(file):
# """
# Process the uploaded PDF file and return analysis results and annotated PDF.
# """
# # print(file.name)
# if file is None:
# return json.dumps({"error": "No file uploaded"}, indent=2), None
# # # Create a temporary file to work with
# # with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_input:
# # temp_input.write(file)
# # temp_input_path = temp_input.name
# # print(temp_input_path)
# temp_input = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf')
# temp_input.write(file)
# temp_input_path = temp_input.name
# print(temp_input_path)
# # Analyze the PDF
# results, annotated_pdf = analyze_pdf(temp_input_path)
# print(results)
# results_json = json.dumps(results, indent=2)
# # Clean up the temporary input file
# os.unlink(temp_input_path)
# # If we have an annotated PDF, save it temporarily
# if annotated_pdf:
# with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
# tmp_file.write(annotated_pdf)
# return results_json, tmp_file.name
# return results_json, None
# # except Exception as e:
# # error_message = json.dumps({
# # "error": str(e),
# # "traceback": traceback.format_exc()
# # }, indent=2)
# # return error_message, None
# def create_interface():
# with gr.Blocks(title="PDF Analyzer") as interface:
# gr.Markdown("# PDF Analyzer")
# gr.Markdown("Upload a PDF document to analyze its structure, references, language, and more.")
# with gr.Row():
# file_input = gr.File(
# label="Upload PDF",
# file_types=[".pdf"],
# type="binary"
# )
# with gr.Row():
# analyze_btn = gr.Button("Analyze PDF")
# with gr.Row():
# results_output = gr.JSON(
# label="Analysis Results",
# show_label=True
# )
# with gr.Row():
# pdf_output = gr.File(
# label="Annotated PDF",
# show_label=True
# )
# analyze_btn.click(
# fn=process_upload,
# inputs=[file_input],
# outputs=[results_output, pdf_output]
# )
# return interface
# if __name__ == "__main__":
# interface = create_interface()
# interface.launch(
# share=False, # Set to False in production
# # server_name="0.0.0.0",
# server_port=None
# )
import os
import requests
from flask import Flask, jsonify
app = Flask(__name__)
# Directory and file configuration
NGRAM_DATA_DIR = "./ngram_data"
NGRAM_FILE_NAME = "ngrams-en-20150817.zip"
NGRAM_FILE_PATH = os.path.join(NGRAM_DATA_DIR, NGRAM_FILE_NAME)
NGRAM_DOWNLOAD_URL = "https://languagetool.org/download/ngram-data/ngrams-en-20150817.zip"
# Ensure the directory exists
def ensure_directory_exists():
if not os.path.exists(NGRAM_DATA_DIR):
os.makedirs(NGRAM_DATA_DIR)
# Download the n-gram data if not already downloaded
def download_ngram_data():
if os.path.exists(NGRAM_FILE_PATH):
print(f"File already exists at {NGRAM_FILE_PATH}, skipping download.")
return
print(f"Downloading n-gram data from {NGRAM_DOWNLOAD_URL}...")
response = requests.get(NGRAM_DOWNLOAD_URL, stream=True)
if response.status_code == 200:
with open(NGRAM_FILE_PATH, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded and saved to {NGRAM_FILE_PATH}.")
else:
raise Exception(f"Failed to download n-gram data. HTTP Status Code: {response.status_code}")
@app.route('/')
def home():
return jsonify({"message": "Welcome to the LanguageTool n-gram downloader!"})
@app.route('/download-ngram', methods=['GET'])
def download_ngram():
try:
ensure_directory_exists()
download_ngram_data()
return jsonify({"message": "N-gram data is downloaded and saved.", "path": NGRAM_FILE_PATH})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
ensure_directory_exists()
download_ngram_data()
app.run(debug=True)
|