File size: 15,790 Bytes
0c80b43 3700c3a 0c80b43 3700c3a 0c80b43 3700c3a 0c80b43 3700c3a 0c80b43 3700c3a 0c80b43 3700c3a 0c80b43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
import PyPDF2
import re
import fitz
from pdfminer.high_level import extract_text
from pdfminer.layout import LAParams
import language_tool_python
from tqdm import tqdm
from typing import List, Dict, Any, Tuple
from collections import Counter
import json
import sys
import traceback
import io
import os
import tempfile
class PDFAnalyzer:
def __init__(self, file_path: str):
self.file_path = file_path
self.pages_text = self.extract_pdf_text_by_page()
self.full_text = self.extract_pdf_text()
self.language_tool = language_tool_python.LanguageTool('en-US')
def extract_pdf_text_by_page(self) -> List[str]:
"""Extracts text from a PDF file, page by page, using PyMuPDF."""
with fitz.open(self.file_path) as doc:
return [page.get_text("text") for page in doc]
def extract_pdf_text(self) -> str:
"""Extracts text from a PDF file using pdfminer."""
return extract_text(self.file_path, laparams=LAParams())
def check_text_presence(self, search_terms: List[str]) -> Dict[str, bool]:
"""Checks for the presence of required terms in the text."""
return {term: term.lower() in self.full_text.lower() for term in search_terms}
def label_authors(self) -> str:
"""Label authors in the text with 'Authors:' if not already labeled."""
author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)"
match = re.search(author_line_regex, self.full_text, re.MULTILINE)
if match:
authors = match.group(1).strip()
return self.full_text.replace(authors, f"Authors: {authors}")
return self.full_text
def check_metadata(self) -> Dict[str, Any]:
"""Check for metadata elements."""
return {
"author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', self.full_text)),
"list_of_authors": bool(re.search(r'Authors?:', self.full_text, re.IGNORECASE)),
"keywords_list": bool(re.search(r'Keywords?:', self.full_text, re.IGNORECASE)),
"word_count": len(self.full_text.split()) or "Missing"
}
def check_disclosures(self) -> Dict[str, bool]:
"""Check for disclosure statements."""
search_terms = [
"author contributions statement",
"conflict of interest statement",
"ethics statement",
"funding statement",
"data access statement"
]
return self.check_text_presence(search_terms)
def check_figures_and_tables(self) -> Dict[str, bool]:
"""Check for figures and tables."""
return {
"figures_with_citations": bool(re.search(r'Figure \d+.*?citation', self.full_text, re.IGNORECASE)),
"figures_legends": bool(re.search(r'Figure \d+.*?legend', self.full_text, re.IGNORECASE)),
"tables_legends": bool(re.search(r'Table \d+.*?legend', self.full_text, re.IGNORECASE))
}
def check_references(self) -> Dict[str, Any]:
"""Check for references."""
return {
"old_references": bool(re.search(r'\b19[0-9]{2}\b', self.full_text)),
"citations_in_abstract": bool(re.search(r'\b(citation|reference)\b', self.full_text[:1000], re.IGNORECASE)),
"reference_count": len(re.findall(r'\[.*?\]', self.full_text)),
"self_citations": bool(re.search(r'Self-citation', self.full_text, re.IGNORECASE))
}
def check_structure(self) -> Dict[str, bool]:
"""Check document structure."""
return {
"imrad_structure": all(section in self.full_text for section in ["Introduction", "Methods", "Results", "Discussion"]),
"abstract_structure": "structured abstract" in self.full_text.lower()
}
def check_language_issues(self) -> Dict[str, Any]:
"""Check for issues with capitalization, hyphenation, punctuation, spacing, etc."""
matches = self.language_tool.check(self.full_text)
word_count = len(self.full_text.split())
issues_count = len(matches)
issues_per_1000 = (issues_count / word_count) * 1000
serializable_matches = [
{
"message": match.message,
"replacements": match.replacements,
"offset": match.offset,
"errorLength": match.errorLength,
"category": match.category,
"ruleIssueType": match.ruleIssueType,
"sentence": match.sentence
}
for match in matches
]
return {
"issues_count": issues_count,
"issues_per_1000": issues_per_1000,
"failed": issues_per_1000 > 20,
"matches": serializable_matches
}
def check_language(self) -> Dict[str, Any]:
"""Check language quality."""
return {
"plain_language": bool(re.search(r'plain language summary', self.full_text, re.IGNORECASE)),
"readability_issues": False, # Placeholder for future implementation
"language_issues": self.check_language_issues()
}
def check_figure_order(self) -> Dict[str, Any]:
"""Check if figures are referred to in sequential order."""
figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)'
figure_references = re.findall(figure_pattern, self.full_text, re.IGNORECASE)
figure_numbers = sorted(set(int(num) for num in figure_references))
is_sequential = all(a + 1 == b for a, b in zip(figure_numbers, figure_numbers[1:]))
if figure_numbers:
expected_figures = set(range(1, max(figure_numbers) + 1))
missing_figures = list(expected_figures - set(figure_numbers))
else:
missing_figures = None
duplicates = [num for num, count in Counter(figure_references).items() if count > 1]
duplicate_numbers = [int(num) for num in duplicates]
notMentioned = list(set(figure_references) - set(duplicates))
return {
"sequential_order": is_sequential,
"figure_count": len(figure_numbers),
"missing_figures": missing_figures,
"figure_order": figure_numbers,
"duplicate_references": duplicates,
"not_mentioned": notMentioned
}
def check_reference_order(self) -> Dict[str, Any]:
"""Check if references in the main body text are in order."""
reference_pattern = r'\[(\d+)\]'
references = re.findall(reference_pattern, self.full_text)
ref_numbers = [int(ref) for ref in references]
max_ref = 0
out_of_order = []
for i, ref in enumerate(ref_numbers):
if ref > max_ref + 1:
out_of_order.append((i+1, ref))
max_ref = max(max_ref, ref)
all_refs = set(range(1, max_ref + 1))
used_refs = set(ref_numbers)
missing_refs = list(all_refs - used_refs)
return {
"max_reference": max_ref,
"out_of_order": out_of_order,
"missing_references": missing_refs,
"is_ordered": len(out_of_order) == 0 and len(missing_refs) == 0
}
def check_reference_style(self) -> Dict[str, Any]:
"""Check the reference style used in the paper and identify inconsistencies."""
reference_section_match = re.search(r'References\b([\s\S]*?)(?:\n\S|\Z)', self.full_text, re.IGNORECASE)
if not reference_section_match:
return {"style": "Unknown", "reason": "References section not found", "inconsistent_refs": []}
references_text = reference_section_match.group(1)
reference_list = re.split(r'\n(?=\[\d+\]|\d+\.\s|\(\w+,\s*\d{4}\))', references_text)
references = [ref.strip() for ref in reference_list if ref.strip()]
styles = []
inconsistent_refs = []
patterns = {
"IEEE": r'^\[\d+\]',
"Harvard": r'^[A-Z][a-z]+,?\s[A-Z]\.\s\(?\d{4}\)?',
"APA": r'^[A-Z][a-z]+,?\s[A-Z]\.\s\(?\d{4}\)?',
"MLA": r'^[A-Z][a-z]+,\s[A-Z][a-z]+\.',
"Vancouver": r'^\d+\.\s',
"Chicago": r'^\d+\s[A-Z][a-z]+\s[A-Z]',
}
for i, ref in enumerate(references, 1):
matched = False
for style, pattern in patterns.items():
if re.match(pattern, ref):
styles.append(style)
matched = True
break
if not matched:
styles.append("Unknown")
inconsistent_refs.append((i, ref, "Unknown"))
if not styles:
return {"style": "Unknown", "reason": "No references found", "inconsistent_refs": []}
style_counts = Counter(styles)
majority_style, majority_count = style_counts.most_common(1)[0]
for i, style in enumerate(styles, 1):
if style != majority_style and style != "Unknown":
inconsistent_refs.append((i, references[i-1], style))
consistency = majority_count / len(styles)
return {
"majority_style": majority_style,
"inconsistent_refs": inconsistent_refs,
"consistency": consistency
}
def highlight_issues_in_pdf(self, inconsistent_refs: List[Tuple[int, str, str]], language_matches: List[Dict[str, Any]]) -> str:
"""Highlight inconsistent references and add notes for language issues in a single PDF."""
try:
doc = fitz.open(self.file_path)
added_notes = set()
for page_number, page in enumerate(doc, start=1):
words = page.get_text("words")
if inconsistent_refs:
for ref_num, ref_text, ref_style in inconsistent_refs:
self.highlight_text(page, words, ref_text, f"Reference {ref_num}: Inconsistent style ({ref_style}). Should be {self.check_reference_style().get('majority_style', 'Unknown')}.")
if language_matches:
for match in language_matches:
issue_text = match['sentence']
error_message = f"{match['message']}\nSuggested correction: {match['replacements'][0] if match['replacements'] else 'No suggestion'}"
issue_key = (issue_text, error_message)
if issue_key not in added_notes:
if self.highlight_text(page, words, issue_text, error_message):
added_notes.add(issue_key)
annotated_file_path = self.file_path.replace(".pdf", "_annotated_combined.pdf")
doc.save(annotated_file_path)
doc.close()
if os.path.exists(annotated_file_path):
return annotated_file_path
else:
print(f"Error: Annotated PDF was not saved at {annotated_file_path}")
return ""
except Exception as e:
print(f"An error occurred while annotating the PDF: {str(e)}", file=sys.stderr)
traceback.print_exc()
return ""
def highlight_text(self, page, words, text, annotation):
"""Highlight text and add annotation."""
text_instances = self.find_text_instances(words, text)
highlighted = False
for inst in text_instances:
highlight = page.add_highlight_annot(inst)
highlight.update()
comment = page.add_text_annot(inst[:2], annotation)
comment.update()
highlighted = True
return highlighted
def find_text_instances(self, words, text):
"""Find all instances of text in words."""
text_lower = text.lower()
text_words = text_lower.split()
instances = []
for i in range(len(words) - len(text_words) + 1):
if all(words[i+j][4].lower() == text_words[j] for j in range(len(text_words))):
inst = fitz.Rect(words[i][:4])
for j in range(1, len(text_words)):
inst = inst | fitz.Rect(words[i+j][:4])
instances.append(inst)
return instances
def analyze(self) -> Dict[str, Any]:
"""Perform full analysis of the PDF."""
self.full_text = self.label_authors()
results = {
"metadata": self.check_metadata(),
"disclosures": self.check_disclosures(),
"figures_and_tables": self.check_figures_and_tables(),
"figure_order": self.check_figure_order(),
"references": self.check_references(),
"reference_order": self.check_reference_order(),
"reference_style": self.check_reference_style(),
"structure": self.check_structure(),
"language": self.check_language(),
"annotated_pdf_path": ""
}
inconsistent_refs = results.get("reference_style", {}).get("inconsistent_refs", [])
language_matches = results.get("language", {}).get("language_issues", {}).get("matches", [])
if inconsistent_refs or language_matches:
annotated_path = self.highlight_issues_in_pdf(inconsistent_refs, language_matches)
results["annotated_pdf_path"] = annotated_path
return results
def analyze_pdf(file):
try:
# Create a temporary directory to store files
with tempfile.TemporaryDirectory() as temp_dir:
# Save the uploaded file temporarily
temp_path = os.path.join(temp_dir, "uploaded.pdf")
with open(temp_path, "wb") as f:
f.write(file.read())
analyzer = PDFAnalyzer(temp_path)
results = analyzer.analyze()
# Ensure all keys are present in the results, even if they're empty
default_results = {
"annotated_pdf_path": "",
"metadata": {},
"disclosures": {},
"figures_and_tables": {},
"figure_order": {},
"references": {},
"reference_order": {},
"reference_style": {},
"structure": {},
"language": {},
}
# Update default_results with actual results
default_results.update(results)
# Handle the annotated PDF
annotated_pdf_path = results.get("annotated_pdf_path", "")
if annotated_pdf_path and os.path.exists(annotated_pdf_path):
# Read the annotated PDF and return it as bytes
with open(annotated_pdf_path, "rb") as f:
annotated_pdf_bytes = f.read()
else:
annotated_pdf_bytes = None
# Remove the annotated_pdf_path from the results as we're returning the file separately
default_results.pop("annotated_pdf_path", None)
return json.dumps(default_results, indent=2, default=str), annotated_pdf_bytes
except Exception as e:
error_message = {
"error": str(e),
"traceback": traceback.format_exc()
}
return json.dumps(error_message, indent=2), None
# Create Gradio interface
iface = gr.Interface(
fn=analyze_pdf,
inputs=gr.File(label="Upload PDF"),
outputs=[
gr.JSON(label="Analysis Results"),
gr.File(label="Annotated PDF")
],
title="PDF Analyzer",
description="Upload a PDF document to analyze its structure, references, language, and more.",
)
# Launch the app
if __name__ == "__main__":
iface.launch() |