samyak152002's picture
Update app.py
12a89b7 verified
raw
history blame
20.7 kB
# import re
# import fitz # PyMuPDF
# from pdfminer.high_level import extract_text
# from pdfminer.layout import LAParams
# import language_tool_python
# from typing import List, Dict, Any, Tuple
# from collections import Counter
# import json
# import traceback
# import io
# import tempfile
# import os
# import gradio as gr
# # Set JAVA_HOME environment variable
# os.environ['JAVA_HOME'] = '/usr/lib/jvm/java-11-openjdk-amd64'
# # ------------------------------
# # Analysis Functions
# # ------------------------------
# # def extract_pdf_text_by_page(file) -> List[str]:
# # """Extracts text from a PDF file, page by page, using PyMuPDF."""
# # if isinstance(file, str):
# # with fitz.open(file) as doc:
# # return [page.get_text("text") for page in doc]
# # else:
# # with fitz.open(stream=file.read(), filetype="pdf") as doc:
# # return [page.get_text("text") for page in doc]
# def extract_pdf_text(file) -> str:
# """Extracts full text from a PDF file using PyMuPDF."""
# try:
# doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file)
# full_text = ""
# for page_number in range(len(doc)):
# page = doc[page_number]
# words = page.get_text("word")
# full_text += words
# print(full_text)
# doc.close()
# print(f"Total extracted text length: {len(full_text)} characters.")
# return full_text
# except Exception as e:
# print(f"Error extracting text from PDF: {e}")
# return ""
# def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]:
# """Checks for the presence of required terms in the text."""
# return {term: term.lower() in full_text.lower() for term in search_terms}
# def label_authors(full_text: str) -> str:
# """Label authors in the text with 'Authors:' if not already labeled."""
# author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)"
# match = re.search(author_line_regex, full_text, re.MULTILINE)
# if match:
# authors = match.group(1).strip()
# return full_text.replace(authors, f"Authors: {authors}")
# return full_text
# def check_metadata(full_text: str) -> Dict[str, Any]:
# """Check for metadata elements."""
# return {
# "author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', full_text)),
# "list_of_authors": bool(re.search(r'Authors?:', full_text, re.IGNORECASE)),
# "keywords_list": bool(re.search(r'Keywords?:', full_text, re.IGNORECASE)),
# "word_count": len(full_text.split()) or "Missing"
# }
# def check_disclosures(full_text: str) -> Dict[str, bool]:
# """Check for disclosure statements."""
# search_terms = [
# "author contributions statement",
# "conflict of interest statement",
# "ethics statement",
# "funding statement",
# "data access statement"
# ]
# return check_text_presence(full_text, search_terms)
# def check_figures_and_tables(full_text: str) -> Dict[str, bool]:
# """Check for figures and tables."""
# return {
# "figures_with_citations": bool(re.search(r'Figure \d+.*?citation', full_text, re.IGNORECASE)),
# "figures_legends": bool(re.search(r'Figure \d+.*?legend', full_text, re.IGNORECASE)),
# "tables_legends": bool(re.search(r'Table \d+.*?legend', full_text, re.IGNORECASE))
# }
# def check_references(full_text: str) -> Dict[str, Any]:
# """Check for references."""
# return {
# "old_references": bool(re.search(r'\b19[0-9]{2}\b', full_text)),
# "citations_in_abstract": bool(re.search(r'\b(citation|reference)\b', full_text[:1000], re.IGNORECASE)),
# "reference_count": len(re.findall(r'\[.*?\]', full_text)),
# "self_citations": bool(re.search(r'Self-citation', full_text, re.IGNORECASE))
# }
# def check_structure(full_text: str) -> Dict[str, bool]:
# """Check document structure."""
# return {
# "imrad_structure": all(section in full_text for section in ["Introduction", "Methods", "Results", "Discussion"]),
# "abstract_structure": "structured abstract" in full_text.lower()
# }
# def check_language_issues(full_text: str) -> Dict[str, Any]:
# """Check for language issues using LanguageTool and additional regex patterns."""
# try:
# language_tool = language_tool_python.LanguageTool('en-US')
# matches = language_tool.check(full_text)
# issues = []
# # Process LanguageTool matches
# for match in matches:
# # Ignore issues with rule_id 'EN_SPLIT_WORDS_HYPHEN'
# if match.ruleId == "EN_SPLIT_WORDS_HYPHEN":
# continue
# issues.append({
# "message": match.message,
# "context": match.context.strip(),
# "suggestions": match.replacements[:3] if match.replacements else [],
# "category": match.category,
# "rule_id": match.ruleId,
# "offset": match.offset,
# "length": match.errorLength,
# "coordinates": [],
# "page": 0
# })
# print(f"Total language issues found: {len(issues)}")
# # -----------------------------------
# # Additions: Regex-based Issue Detection
# # -----------------------------------
# # Define regex pattern to find words immediately followed by '[' without space
# regex_pattern = r'\b(\w+)\[(\d+)\]'
# regex_matches = list(re.finditer(regex_pattern, full_text))
# print(f"Total regex issues found: {len(regex_matches)}")
# # Process regex matches
# for match in regex_matches:
# word = match.group(1)
# number = match.group(2)
# start = match.start()
# end = match.end()
# issues.append({
# "message": f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.",
# "context": full_text[max(match.start() - 30, 0):min(match.end() + 30, len(full_text))].strip(),
# "suggestions": [f"{word} [{number}]", f"{word} [`{number}`]", f"{word} [number {number}]"],
# "category": "Formatting",
# "rule_id": "SPACE_BEFORE_BRACKET",
# "offset": match.start(),
# "length": match.end() - match.start(),
# "coordinates": [],
# "page": 0
# })
# print(f"Total combined issues found: {len(issues)}")
# return {
# "total_issues": len(issues),
# "issues": issues
# }
# except Exception as e:
# print(f"Error checking language issues: {e}")
# return {"error": str(e)}
# def check_language(full_text: str) -> Dict[str, Any]:
# """Check language quality."""
# return {
# "plain_language": bool(re.search(r'plain language summary', full_text, re.IGNORECASE)),
# "readability_issues": False, # Placeholder for future implementation
# "language_issues": check_language_issues(full_text)
# }
# def check_figure_order(full_text: str) -> Dict[str, Any]:
# """Check if figures are referred to in sequential order."""
# figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)'
# figure_references = re.findall(figure_pattern, full_text, re.IGNORECASE)
# figure_numbers = sorted(set(int(num) for num in figure_references))
# is_sequential = all(a + 1 == b for a, b in zip(figure_numbers, figure_numbers[1:]))
# if figure_numbers:
# expected_figures = set(range(1, max(figure_numbers) + 1))
# missing_figures = list(expected_figures - set(figure_numbers))
# else:
# missing_figures = None
# duplicates = [num for num, count in Counter(figure_references).items() if count > 1]
# duplicate_numbers = [int(num) for num in duplicates]
# not_mentioned = list(set(figure_references) - set(duplicates))
# return {
# "sequential_order": is_sequential,
# "figure_count": len(figure_numbers),
# "missing_figures": missing_figures,
# "figure_order": figure_numbers,
# "duplicate_references": duplicates,
# "not_mentioned": not_mentioned
# }
# def check_reference_order(full_text: str) -> Dict[str, Any]:
# """Check if references in the main body text are in order."""
# reference_pattern = r'\[(\d+)\]'
# references = re.findall(reference_pattern, full_text)
# ref_numbers = [int(ref) for ref in references]
# max_ref = 0
# out_of_order = []
# for i, ref in enumerate(ref_numbers):
# if ref > max_ref + 1:
# out_of_order.append((i+1, ref))
# max_ref = max(max_ref, ref)
# all_refs = set(range(1, max_ref + 1))
# used_refs = set(ref_numbers)
# missing_refs = list(all_refs - used_refs)
# return {
# "max_reference": max_ref,
# "out_of_order": out_of_order,
# "missing_references": missing_refs,
# "is_ordered": len(out_of_order) == 0 and len(missing_refs) == 0
# }
# def highlight_issues_in_pdf(file, language_matches: List[Dict[str, Any]]) -> bytes:
# """
# Highlights language issues in the PDF and returns the annotated PDF as bytes.
# This function maps LanguageTool matches to specific words in the PDF
# and highlights those words.
# """
# try:
# # Open the PDF
# doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file)
# # print(f"Opened PDF with {len(doc)} pages.")
# # print(language_matches)
# # Extract words with positions from each page
# word_list = [] # List of tuples: (page_number, word, x0, y0, x1, y1)
# for page_number in range(len(doc)):
# page = doc[page_number]
# print(page.get_text("words"))
# words = page.get_text("words") # List of tuples: (x0, y0, x1, y1, "word", block_no, line_no, word_no)
# for w in words:
# # print(w)
# word_text = w[4]
# # **Fix:** Insert a space before '[' to ensure "globally [2]" instead of "globally[2]"
# # if '[' in word_text:
# # word_text = word_text.replace('[', ' [')
# word_list.append((page_number, word_text, w[0], w[1], w[2], w[3]))
# # print(f"Total words extracted: {len(word_list)}")
# # Concatenate all words to form the full text
# concatenated_text=""
# concatenated_text = " ".join([w[1] for w in word_list])
# # print(f"Concatenated text length: {concatenated_text} characters.")
# # Find "Abstract" section and set the processing start point
# abstract_start = concatenated_text.lower().find("abstract")
# abstract_offset = 0 if abstract_start == -1 else abstract_start
# # Find "References" section and exclude from processing
# references_start = concatenated_text.lower().find("references")
# references_offset = len(concatenated_text) if references_start == -1 else references_start
# # Iterate over each language issue
# for idx, issue in enumerate(language_matches, start=1):
# offset = issue["offset"] # offset+line_no-1
# length = issue["length"]
# # Skip issues in the references section
# if offset < abstract_offset or offset >= references_offset:
# continue
# error_text = concatenated_text[offset:offset+length]
# print(f"\nIssue {idx}: '{error_text}' at offset {offset} with length {length}")
# # Find the words that fall within the error span
# current_pos = 0
# target_words = []
# for word in word_list:
# word_text = word[1]
# word_length = len(word_text) + 1 # +1 for the space
# if current_pos + word_length > offset and current_pos < offset + length:
# target_words.append(word)
# current_pos += word_length
# if not target_words:
# # print("No matching words found for this issue.")
# continue
# initial_x = target_words[0][2]
# initial_y = target_words[0][3]
# final_x = target_words[len(target_words)-1][4]
# final_y = target_words[len(target_words)-1][5]
# issue["coordinates"] = [initial_x, initial_y, final_x, final_y]
# issue["page"] = target_words[0][0] + 1
# # Add highlight annotations to the target words
# print()
# print("issue", issue)
# print("error text", error_text)
# print(target_words)
# print()
# for target in target_words:
# page_num, word_text, x0, y0, x1, y1 = target
# page = doc[page_num]
# # Define a rectangle around the word with some padding
# rect = fitz.Rect(x0 - 1, y0 - 1, x1 + 1, y1 + 1)
# # Add a highlight annotation
# highlight = page.add_highlight_annot(rect)
# highlight.set_colors(stroke=(1, 1, 0)) # Yellow color
# highlight.update()
# # print(f"Highlighted '{word_text}' on page {page_num + 1} at position ({x0}, {y0}, {x1}, {y1})")
# # Save annotated PDF to bytes
# byte_stream = io.BytesIO()
# doc.save(byte_stream)
# annotated_pdf_bytes = byte_stream.getvalue()
# doc.close()
# # Save annotated PDF locally for verification
# with open("annotated_temp.pdf", "wb") as f:
# f.write(annotated_pdf_bytes)
# # print("Annotated PDF saved as 'annotated_temp.pdf' for manual verification.")
# return language_matches, annotated_pdf_bytes
# except Exception as e:
# print(f"Error in highlighting PDF: {e}")
# return b""
# # ------------------------------
# # Main Analysis Function
# # ------------------------------
# # server/gradio_client.py
# def analyze_pdf(filepath: str) -> Tuple[Dict[str, Any], bytes]:
# """Analyzes the PDF for language issues and returns results and annotated PDF."""
# try:
# full_text = extract_pdf_text(filepath)
# if not full_text:
# return {"error": "Failed to extract text from PDF."}, None
# # Create the results structure
# results = {
# "issues": [], # Initialize as empty array
# "regex_checks": {
# "metadata": check_metadata(full_text),
# "disclosures": check_disclosures(full_text),
# "figures_and_tables": check_figures_and_tables(full_text),
# "references": check_references(full_text),
# "structure": check_structure(full_text),
# "figure_order": check_figure_order(full_text),
# "reference_order": check_reference_order(full_text)
# }
# }
# # Handle language issues
# language_issues = check_language_issues(full_text)
# if "error" in language_issues:
# return {"error": language_issues["error"]}, None
# issues = language_issues.get("issues", [])
# if issues:
# language_matches, annotated_pdf = highlight_issues_in_pdf(filepath, issues)
# results["issues"] = language_matches # This is already an array from check_language_issues
# return results, annotated_pdf
# else:
# # Keep issues as empty array if none found
# return results, None
# except Exception as e:
# return {"error": str(e)}, None
# # ------------------------------
# # Gradio Interface
# # ------------------------------
# def process_upload(file):
# """
# Process the uploaded PDF file and return analysis results and annotated PDF.
# """
# # print(file.name)
# if file is None:
# return json.dumps({"error": "No file uploaded"}, indent=2), None
# # # Create a temporary file to work with
# # with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_input:
# # temp_input.write(file)
# # temp_input_path = temp_input.name
# # print(temp_input_path)
# temp_input = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf')
# temp_input.write(file)
# temp_input_path = temp_input.name
# print(temp_input_path)
# # Analyze the PDF
# results, annotated_pdf = analyze_pdf(temp_input_path)
# print(results)
# results_json = json.dumps(results, indent=2)
# # Clean up the temporary input file
# os.unlink(temp_input_path)
# # If we have an annotated PDF, save it temporarily
# if annotated_pdf:
# with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
# tmp_file.write(annotated_pdf)
# return results_json, tmp_file.name
# return results_json, None
# # except Exception as e:
# # error_message = json.dumps({
# # "error": str(e),
# # "traceback": traceback.format_exc()
# # }, indent=2)
# # return error_message, None
# def create_interface():
# with gr.Blocks(title="PDF Analyzer") as interface:
# gr.Markdown("# PDF Analyzer")
# gr.Markdown("Upload a PDF document to analyze its structure, references, language, and more.")
# with gr.Row():
# file_input = gr.File(
# label="Upload PDF",
# file_types=[".pdf"],
# type="binary"
# )
# with gr.Row():
# analyze_btn = gr.Button("Analyze PDF")
# with gr.Row():
# results_output = gr.JSON(
# label="Analysis Results",
# show_label=True
# )
# with gr.Row():
# pdf_output = gr.File(
# label="Annotated PDF",
# show_label=True
# )
# analyze_btn.click(
# fn=process_upload,
# inputs=[file_input],
# outputs=[results_output, pdf_output]
# )
# return interface
# if __name__ == "__main__":
# interface = create_interface()
# interface.launch(
# share=False, # Set to False in production
# # server_name="0.0.0.0",
# server_port=None
# )
import os
import requests
from flask import Flask, jsonify
app = Flask(__name__)
# Directory and file configuration
NGRAM_DATA_DIR = "./ngram_data"
NGRAM_FILE_NAME = "ngrams-en-20150817.zip"
NGRAM_FILE_PATH = os.path.join(NGRAM_DATA_DIR, NGRAM_FILE_NAME)
NGRAM_DOWNLOAD_URL = "https://languagetool.org/download/ngram-data/ngrams-en-20150817.zip"
# Ensure the directory exists
def ensure_directory_exists():
if not os.path.exists(NGRAM_DATA_DIR):
os.makedirs(NGRAM_DATA_DIR)
# Download the n-gram data if not already downloaded
def download_ngram_data():
if os.path.exists(NGRAM_FILE_PATH):
print(f"File already exists at {NGRAM_FILE_PATH}, skipping download.")
return
print(f"Downloading n-gram data from {NGRAM_DOWNLOAD_URL}...")
response = requests.get(NGRAM_DOWNLOAD_URL, stream=True)
if response.status_code == 200:
with open(NGRAM_FILE_PATH, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded and saved to {NGRAM_FILE_PATH}.")
else:
raise Exception(f"Failed to download n-gram data. HTTP Status Code: {response.status_code}")
@app.route('/')
def home():
return jsonify({"message": "Welcome to the LanguageTool n-gram downloader!"})
@app.route('/download-ngram', methods=['GET'])
def download_ngram():
try:
ensure_directory_exists()
download_ngram_data()
return jsonify({"message": "N-gram data is downloaded and saved.", "path": NGRAM_FILE_PATH})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
ensure_directory_exists()
download_ngram_data()
app.run(debug=True)