# import re | |
# import fitz # PyMuPDF | |
# from pdfminer.high_level import extract_text | |
# from pdfminer.layout import LAParams | |
# import language_tool_python | |
# from typing import List, Dict, Any, Tuple | |
# from collections import Counter | |
# import json | |
# import traceback | |
# import io | |
# import tempfile | |
# import os | |
# import gradio as gr | |
# # Set JAVA_HOME environment variable | |
# os.environ['JAVA_HOME'] = '/usr/lib/jvm/java-11-openjdk-amd64' | |
# # ------------------------------ | |
# # Analysis Functions | |
# # ------------------------------ | |
# # def extract_pdf_text_by_page(file) -> List[str]: | |
# # """Extracts text from a PDF file, page by page, using PyMuPDF.""" | |
# # if isinstance(file, str): | |
# # with fitz.open(file) as doc: | |
# # return [page.get_text("text") for page in doc] | |
# # else: | |
# # with fitz.open(stream=file.read(), filetype="pdf") as doc: | |
# # return [page.get_text("text") for page in doc] | |
# def extract_pdf_text(file) -> str: | |
# """Extracts full text from a PDF file using PyMuPDF.""" | |
# try: | |
# doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file) | |
# full_text = "" | |
# for page_number in range(len(doc)): | |
# page = doc[page_number] | |
# words = page.get_text("word") | |
# full_text += words | |
# print(full_text) | |
# doc.close() | |
# print(f"Total extracted text length: {len(full_text)} characters.") | |
# return full_text | |
# except Exception as e: | |
# print(f"Error extracting text from PDF: {e}") | |
# return "" | |
# def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]: | |
# """Checks for the presence of required terms in the text.""" | |
# return {term: term.lower() in full_text.lower() for term in search_terms} | |
# def label_authors(full_text: str) -> str: | |
# """Label authors in the text with 'Authors:' if not already labeled.""" | |
# author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)" | |
# match = re.search(author_line_regex, full_text, re.MULTILINE) | |
# if match: | |
# authors = match.group(1).strip() | |
# return full_text.replace(authors, f"Authors: {authors}") | |
# return full_text | |
# def check_metadata(full_text: str) -> Dict[str, Any]: | |
# """Check for metadata elements.""" | |
# return { | |
# "author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', full_text)), | |
# "list_of_authors": bool(re.search(r'Authors?:', full_text, re.IGNORECASE)), | |
# "keywords_list": bool(re.search(r'Keywords?:', full_text, re.IGNORECASE)), | |
# "word_count": len(full_text.split()) or "Missing" | |
# } | |
# def check_disclosures(full_text: str) -> Dict[str, bool]: | |
# """Check for disclosure statements.""" | |
# search_terms = [ | |
# "author contributions statement", | |
# "conflict of interest statement", | |
# "ethics statement", | |
# "funding statement", | |
# "data access statement" | |
# ] | |
# return check_text_presence(full_text, search_terms) | |
# def check_figures_and_tables(full_text: str) -> Dict[str, bool]: | |
# """Check for figures and tables.""" | |
# return { | |
# "figures_with_citations": bool(re.search(r'Figure \d+.*?citation', full_text, re.IGNORECASE)), | |
# "figures_legends": bool(re.search(r'Figure \d+.*?legend', full_text, re.IGNORECASE)), | |
# "tables_legends": bool(re.search(r'Table \d+.*?legend', full_text, re.IGNORECASE)) | |
# } | |
# def check_references(full_text: str) -> Dict[str, Any]: | |
# """Check for references.""" | |
# return { | |
# "old_references": bool(re.search(r'\b19[0-9]{2}\b', full_text)), | |
# "citations_in_abstract": bool(re.search(r'\b(citation|reference)\b', full_text[:1000], re.IGNORECASE)), | |
# "reference_count": len(re.findall(r'\[.*?\]', full_text)), | |
# "self_citations": bool(re.search(r'Self-citation', full_text, re.IGNORECASE)) | |
# } | |
# def check_structure(full_text: str) -> Dict[str, bool]: | |
# """Check document structure.""" | |
# return { | |
# "imrad_structure": all(section in full_text for section in ["Introduction", "Methods", "Results", "Discussion"]), | |
# "abstract_structure": "structured abstract" in full_text.lower() | |
# } | |
# def check_language_issues(full_text: str) -> Dict[str, Any]: | |
# """Check for language issues using LanguageTool and additional regex patterns.""" | |
# try: | |
# language_tool = language_tool_python.LanguageTool('en-US') | |
# matches = language_tool.check(full_text) | |
# issues = [] | |
# # Process LanguageTool matches | |
# for match in matches: | |
# # Ignore issues with rule_id 'EN_SPLIT_WORDS_HYPHEN' | |
# if match.ruleId == "EN_SPLIT_WORDS_HYPHEN": | |
# continue | |
# issues.append({ | |
# "message": match.message, | |
# "context": match.context.strip(), | |
# "suggestions": match.replacements[:3] if match.replacements else [], | |
# "category": match.category, | |
# "rule_id": match.ruleId, | |
# "offset": match.offset, | |
# "length": match.errorLength, | |
# "coordinates": [], | |
# "page": 0 | |
# }) | |
# print(f"Total language issues found: {len(issues)}") | |
# # ----------------------------------- | |
# # Additions: Regex-based Issue Detection | |
# # ----------------------------------- | |
# # Define regex pattern to find words immediately followed by '[' without space | |
# regex_pattern = r'\b(\w+)\[(\d+)\]' | |
# regex_matches = list(re.finditer(regex_pattern, full_text)) | |
# print(f"Total regex issues found: {len(regex_matches)}") | |
# # Process regex matches | |
# for match in regex_matches: | |
# word = match.group(1) | |
# number = match.group(2) | |
# start = match.start() | |
# end = match.end() | |
# issues.append({ | |
# "message": f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.", | |
# "context": full_text[max(match.start() - 30, 0):min(match.end() + 30, len(full_text))].strip(), | |
# "suggestions": [f"{word} [{number}]", f"{word} [`{number}`]", f"{word} [number {number}]"], | |
# "category": "Formatting", | |
# "rule_id": "SPACE_BEFORE_BRACKET", | |
# "offset": match.start(), | |
# "length": match.end() - match.start(), | |
# "coordinates": [], | |
# "page": 0 | |
# }) | |
# print(f"Total combined issues found: {len(issues)}") | |
# return { | |
# "total_issues": len(issues), | |
# "issues": issues | |
# } | |
# except Exception as e: | |
# print(f"Error checking language issues: {e}") | |
# return {"error": str(e)} | |
# def check_language(full_text: str) -> Dict[str, Any]: | |
# """Check language quality.""" | |
# return { | |
# "plain_language": bool(re.search(r'plain language summary', full_text, re.IGNORECASE)), | |
# "readability_issues": False, # Placeholder for future implementation | |
# "language_issues": check_language_issues(full_text) | |
# } | |
# def check_figure_order(full_text: str) -> Dict[str, Any]: | |
# """Check if figures are referred to in sequential order.""" | |
# figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)' | |
# figure_references = re.findall(figure_pattern, full_text, re.IGNORECASE) | |
# figure_numbers = sorted(set(int(num) for num in figure_references)) | |
# is_sequential = all(a + 1 == b for a, b in zip(figure_numbers, figure_numbers[1:])) | |
# if figure_numbers: | |
# expected_figures = set(range(1, max(figure_numbers) + 1)) | |
# missing_figures = list(expected_figures - set(figure_numbers)) | |
# else: | |
# missing_figures = None | |
# duplicates = [num for num, count in Counter(figure_references).items() if count > 1] | |
# duplicate_numbers = [int(num) for num in duplicates] | |
# not_mentioned = list(set(figure_references) - set(duplicates)) | |
# return { | |
# "sequential_order": is_sequential, | |
# "figure_count": len(figure_numbers), | |
# "missing_figures": missing_figures, | |
# "figure_order": figure_numbers, | |
# "duplicate_references": duplicates, | |
# "not_mentioned": not_mentioned | |
# } | |
# def check_reference_order(full_text: str) -> Dict[str, Any]: | |
# """Check if references in the main body text are in order.""" | |
# reference_pattern = r'\[(\d+)\]' | |
# references = re.findall(reference_pattern, full_text) | |
# ref_numbers = [int(ref) for ref in references] | |
# max_ref = 0 | |
# out_of_order = [] | |
# for i, ref in enumerate(ref_numbers): | |
# if ref > max_ref + 1: | |
# out_of_order.append((i+1, ref)) | |
# max_ref = max(max_ref, ref) | |
# all_refs = set(range(1, max_ref + 1)) | |
# used_refs = set(ref_numbers) | |
# missing_refs = list(all_refs - used_refs) | |
# return { | |
# "max_reference": max_ref, | |
# "out_of_order": out_of_order, | |
# "missing_references": missing_refs, | |
# "is_ordered": len(out_of_order) == 0 and len(missing_refs) == 0 | |
# } | |
# def highlight_issues_in_pdf(file, language_matches: List[Dict[str, Any]]) -> bytes: | |
# """ | |
# Highlights language issues in the PDF and returns the annotated PDF as bytes. | |
# This function maps LanguageTool matches to specific words in the PDF | |
# and highlights those words. | |
# """ | |
# try: | |
# # Open the PDF | |
# doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file) | |
# # print(f"Opened PDF with {len(doc)} pages.") | |
# # print(language_matches) | |
# # Extract words with positions from each page | |
# word_list = [] # List of tuples: (page_number, word, x0, y0, x1, y1) | |
# for page_number in range(len(doc)): | |
# page = doc[page_number] | |
# print(page.get_text("words")) | |
# words = page.get_text("words") # List of tuples: (x0, y0, x1, y1, "word", block_no, line_no, word_no) | |
# for w in words: | |
# # print(w) | |
# word_text = w[4] | |
# # **Fix:** Insert a space before '[' to ensure "globally [2]" instead of "globally[2]" | |
# # if '[' in word_text: | |
# # word_text = word_text.replace('[', ' [') | |
# word_list.append((page_number, word_text, w[0], w[1], w[2], w[3])) | |
# # print(f"Total words extracted: {len(word_list)}") | |
# # Concatenate all words to form the full text | |
# concatenated_text="" | |
# concatenated_text = " ".join([w[1] for w in word_list]) | |
# # print(f"Concatenated text length: {concatenated_text} characters.") | |
# # Find "Abstract" section and set the processing start point | |
# abstract_start = concatenated_text.lower().find("abstract") | |
# abstract_offset = 0 if abstract_start == -1 else abstract_start | |
# # Find "References" section and exclude from processing | |
# references_start = concatenated_text.lower().find("references") | |
# references_offset = len(concatenated_text) if references_start == -1 else references_start | |
# # Iterate over each language issue | |
# for idx, issue in enumerate(language_matches, start=1): | |
# offset = issue["offset"] # offset+line_no-1 | |
# length = issue["length"] | |
# # Skip issues in the references section | |
# if offset < abstract_offset or offset >= references_offset: | |
# continue | |
# error_text = concatenated_text[offset:offset+length] | |
# print(f"\nIssue {idx}: '{error_text}' at offset {offset} with length {length}") | |
# # Find the words that fall within the error span | |
# current_pos = 0 | |
# target_words = [] | |
# for word in word_list: | |
# word_text = word[1] | |
# word_length = len(word_text) + 1 # +1 for the space | |
# if current_pos + word_length > offset and current_pos < offset + length: | |
# target_words.append(word) | |
# current_pos += word_length | |
# if not target_words: | |
# # print("No matching words found for this issue.") | |
# continue | |
# initial_x = target_words[0][2] | |
# initial_y = target_words[0][3] | |
# final_x = target_words[len(target_words)-1][4] | |
# final_y = target_words[len(target_words)-1][5] | |
# issue["coordinates"] = [initial_x, initial_y, final_x, final_y] | |
# issue["page"] = target_words[0][0] + 1 | |
# # Add highlight annotations to the target words | |
# print() | |
# print("issue", issue) | |
# print("error text", error_text) | |
# print(target_words) | |
# print() | |
# for target in target_words: | |
# page_num, word_text, x0, y0, x1, y1 = target | |
# page = doc[page_num] | |
# # Define a rectangle around the word with some padding | |
# rect = fitz.Rect(x0 - 1, y0 - 1, x1 + 1, y1 + 1) | |
# # Add a highlight annotation | |
# highlight = page.add_highlight_annot(rect) | |
# highlight.set_colors(stroke=(1, 1, 0)) # Yellow color | |
# highlight.update() | |
# # print(f"Highlighted '{word_text}' on page {page_num + 1} at position ({x0}, {y0}, {x1}, {y1})") | |
# # Save annotated PDF to bytes | |
# byte_stream = io.BytesIO() | |
# doc.save(byte_stream) | |
# annotated_pdf_bytes = byte_stream.getvalue() | |
# doc.close() | |
# # Save annotated PDF locally for verification | |
# with open("annotated_temp.pdf", "wb") as f: | |
# f.write(annotated_pdf_bytes) | |
# # print("Annotated PDF saved as 'annotated_temp.pdf' for manual verification.") | |
# return language_matches, annotated_pdf_bytes | |
# except Exception as e: | |
# print(f"Error in highlighting PDF: {e}") | |
# return b"" | |
# # ------------------------------ | |
# # Main Analysis Function | |
# # ------------------------------ | |
# # server/gradio_client.py | |
# def analyze_pdf(filepath: str) -> Tuple[Dict[str, Any], bytes]: | |
# """Analyzes the PDF for language issues and returns results and annotated PDF.""" | |
# try: | |
# full_text = extract_pdf_text(filepath) | |
# if not full_text: | |
# return {"error": "Failed to extract text from PDF."}, None | |
# # Create the results structure | |
# results = { | |
# "issues": [], # Initialize as empty array | |
# "regex_checks": { | |
# "metadata": check_metadata(full_text), | |
# "disclosures": check_disclosures(full_text), | |
# "figures_and_tables": check_figures_and_tables(full_text), | |
# "references": check_references(full_text), | |
# "structure": check_structure(full_text), | |
# "figure_order": check_figure_order(full_text), | |
# "reference_order": check_reference_order(full_text) | |
# } | |
# } | |
# # Handle language issues | |
# language_issues = check_language_issues(full_text) | |
# if "error" in language_issues: | |
# return {"error": language_issues["error"]}, None | |
# issues = language_issues.get("issues", []) | |
# if issues: | |
# language_matches, annotated_pdf = highlight_issues_in_pdf(filepath, issues) | |
# results["issues"] = language_matches # This is already an array from check_language_issues | |
# return results, annotated_pdf | |
# else: | |
# # Keep issues as empty array if none found | |
# return results, None | |
# except Exception as e: | |
# return {"error": str(e)}, None | |
# # ------------------------------ | |
# # Gradio Interface | |
# # ------------------------------ | |
# def process_upload(file): | |
# """ | |
# Process the uploaded PDF file and return analysis results and annotated PDF. | |
# """ | |
# # print(file.name) | |
# if file is None: | |
# return json.dumps({"error": "No file uploaded"}, indent=2), None | |
# # # Create a temporary file to work with | |
# # with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_input: | |
# # temp_input.write(file) | |
# # temp_input_path = temp_input.name | |
# # print(temp_input_path) | |
# temp_input = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') | |
# temp_input.write(file) | |
# temp_input_path = temp_input.name | |
# print(temp_input_path) | |
# # Analyze the PDF | |
# results, annotated_pdf = analyze_pdf(temp_input_path) | |
# print(results) | |
# results_json = json.dumps(results, indent=2) | |
# # Clean up the temporary input file | |
# os.unlink(temp_input_path) | |
# # If we have an annotated PDF, save it temporarily | |
# if annotated_pdf: | |
# with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file: | |
# tmp_file.write(annotated_pdf) | |
# return results_json, tmp_file.name | |
# return results_json, None | |
# # except Exception as e: | |
# # error_message = json.dumps({ | |
# # "error": str(e), | |
# # "traceback": traceback.format_exc() | |
# # }, indent=2) | |
# # return error_message, None | |
# def create_interface(): | |
# with gr.Blocks(title="PDF Analyzer") as interface: | |
# gr.Markdown("# PDF Analyzer") | |
# gr.Markdown("Upload a PDF document to analyze its structure, references, language, and more.") | |
# with gr.Row(): | |
# file_input = gr.File( | |
# label="Upload PDF", | |
# file_types=[".pdf"], | |
# type="binary" | |
# ) | |
# with gr.Row(): | |
# analyze_btn = gr.Button("Analyze PDF") | |
# with gr.Row(): | |
# results_output = gr.JSON( | |
# label="Analysis Results", | |
# show_label=True | |
# ) | |
# with gr.Row(): | |
# pdf_output = gr.File( | |
# label="Annotated PDF", | |
# show_label=True | |
# ) | |
# analyze_btn.click( | |
# fn=process_upload, | |
# inputs=[file_input], | |
# outputs=[results_output, pdf_output] | |
# ) | |
# return interface | |
# if __name__ == "__main__": | |
# interface = create_interface() | |
# interface.launch( | |
# share=False, # Set to False in production | |
# # server_name="0.0.0.0", | |
# server_port=None | |
# ) | |
import os | |
import requests | |
from flask import Flask, jsonify | |
app = Flask(__name__) | |
# Directory and file configuration | |
NGRAM_DATA_DIR = "./ngram_data" | |
NGRAM_FILE_NAME = "ngrams-en-20150817.zip" | |
NGRAM_FILE_PATH = os.path.join(NGRAM_DATA_DIR, NGRAM_FILE_NAME) | |
NGRAM_DOWNLOAD_URL = "https://languagetool.org/download/ngram-data/ngrams-en-20150817.zip" | |
# Ensure the directory exists | |
def ensure_directory_exists(): | |
if not os.path.exists(NGRAM_DATA_DIR): | |
os.makedirs(NGRAM_DATA_DIR) | |
# Download the n-gram data if not already downloaded | |
def download_ngram_data(): | |
if os.path.exists(NGRAM_FILE_PATH): | |
print(f"File already exists at {NGRAM_FILE_PATH}, skipping download.") | |
return | |
print(f"Downloading n-gram data from {NGRAM_DOWNLOAD_URL}...") | |
response = requests.get(NGRAM_DOWNLOAD_URL, stream=True) | |
if response.status_code == 200: | |
with open(NGRAM_FILE_PATH, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print(f"Downloaded and saved to {NGRAM_FILE_PATH}.") | |
else: | |
raise Exception(f"Failed to download n-gram data. HTTP Status Code: {response.status_code}") | |
def home(): | |
return jsonify({"message": "Welcome to the LanguageTool n-gram downloader!"}) | |
def download_ngram(): | |
try: | |
ensure_directory_exists() | |
download_ngram_data() | |
return jsonify({"message": "N-gram data is downloaded and saved.", "path": NGRAM_FILE_PATH}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
if __name__ == "__main__": | |
ensure_directory_exists() | |
download_ngram_data() | |
app.run(debug=True) | |