|
import re |
|
import fitz |
|
from pdfminer.high_level import extract_text |
|
from pdfminer.layout import LAParams |
|
import language_tool_python |
|
from typing import List, Dict, Any, Tuple |
|
from collections import Counter |
|
import json |
|
import traceback |
|
import io |
|
import tempfile |
|
import os |
|
import gradio as gr |
|
|
|
|
|
os.environ['JAVA_HOME'] = '/usr/lib/jvm/java-11-openjdk-amd64' |
|
|
|
|
|
|
|
|
|
|
|
def extract_pdf_text_by_page(file) -> List[str]: |
|
"""Extracts text from a PDF file, page by page, using PyMuPDF.""" |
|
if isinstance(file, str): |
|
with fitz.open(file) as doc: |
|
return [page.get_text("text") for page in doc] |
|
else: |
|
with fitz.open(stream=file.read(), filetype="pdf") as doc: |
|
return [page.get_text("text") for page in doc] |
|
|
|
def extract_pdf_text(file) -> str: |
|
"""Extracts full text from a PDF file using PyMuPDF.""" |
|
try: |
|
doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file) |
|
full_text = "" |
|
|
|
for page_num, page in enumerate(doc, start=1): |
|
|
|
blocks = page.get_text("blocks") |
|
processed_text = "" |
|
|
|
for block in blocks: |
|
text = block[4] |
|
|
|
|
|
text = re.sub(r'(\w+)-\s*\n\s*(\w+)', lambda m: m.group(1) + m.group(2), text) |
|
|
|
|
|
processed_text += text + "\n" |
|
|
|
full_text += processed_text |
|
print(f"Extracted text from page {page_num}: {len(processed_text)} characters.") |
|
|
|
doc.close() |
|
print(f"Total extracted text length: {len(full_text)} characters.") |
|
return full_text |
|
|
|
except Exception as e: |
|
print(f"Error extracting text from PDF: {e}") |
|
return "" |
|
|
|
def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]: |
|
"""Checks for the presence of required terms in the text.""" |
|
return {term: term.lower() in full_text.lower() for term in search_terms} |
|
|
|
def label_authors(full_text: str) -> str: |
|
"""Label authors in the text with 'Authors:' if not already labeled.""" |
|
author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)" |
|
match = re.search(author_line_regex, full_text, re.MULTILINE) |
|
if match: |
|
authors = match.group(1).strip() |
|
return full_text.replace(authors, f"Authors: {authors}") |
|
return full_text |
|
|
|
def check_metadata(full_text: str) -> Dict[str, Any]: |
|
"""Check for metadata elements.""" |
|
return { |
|
"author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', full_text)), |
|
"list_of_authors": bool(re.search(r'Authors?:', full_text, re.IGNORECASE)), |
|
"keywords_list": bool(re.search(r'Keywords?:', full_text, re.IGNORECASE)), |
|
"word_count": len(full_text.split()) or "Missing" |
|
} |
|
|
|
def check_disclosures(full_text: str) -> Dict[str, bool]: |
|
"""Check for disclosure statements.""" |
|
search_terms = [ |
|
"author contributions statement", |
|
"conflict of interest statement", |
|
"ethics statement", |
|
"funding statement", |
|
"data access statement" |
|
] |
|
return check_text_presence(full_text, search_terms) |
|
|
|
def check_figures_and_tables(full_text: str) -> Dict[str, bool]: |
|
"""Check for figures and tables.""" |
|
return { |
|
"figures_with_citations": bool(re.search(r'Figure \d+.*?citation', full_text, re.IGNORECASE)), |
|
"figures_legends": bool(re.search(r'Figure \d+.*?legend', full_text, re.IGNORECASE)), |
|
"tables_legends": bool(re.search(r'Table \d+.*?legend', full_text, re.IGNORECASE)) |
|
} |
|
|
|
def check_references(full_text: str) -> Dict[str, Any]: |
|
"""Check for references.""" |
|
return { |
|
"old_references": bool(re.search(r'\b19[0-9]{2}\b', full_text)), |
|
"citations_in_abstract": bool(re.search(r'\b(citation|reference)\b', full_text[:1000], re.IGNORECASE)), |
|
"reference_count": len(re.findall(r'\[.*?\]', full_text)), |
|
"self_citations": bool(re.search(r'Self-citation', full_text, re.IGNORECASE)) |
|
} |
|
|
|
def check_structure(full_text: str) -> Dict[str, bool]: |
|
"""Check document structure.""" |
|
return { |
|
"imrad_structure": all(section in full_text for section in ["Introduction", "Methods", "Results", "Discussion"]), |
|
"abstract_structure": "structured abstract" in full_text.lower() |
|
} |
|
|
|
def check_language_issues(full_text: str) -> Dict[str, Any]: |
|
"""Check for language issues using LanguageTool.""" |
|
try: |
|
language_tool = language_tool_python.LanguageTool('en-US') |
|
matches = language_tool.check(full_text) |
|
issues = [] |
|
for match in matches: |
|
issues.append({ |
|
"message": match.message, |
|
"context": match.context.strip(), |
|
"suggestions": match.replacements[:3] if match.replacements else [], |
|
"category": match.category, |
|
"rule_id": match.ruleId, |
|
"offset": match.offset, |
|
"length": match.errorLength, |
|
"coordinates":[], |
|
"page":0 |
|
}) |
|
print(f"Total language issues found: {len(issues)}") |
|
return { |
|
"total_issues": len(issues), |
|
"issues": issues |
|
} |
|
except Exception as e: |
|
print(f"Error checking language issues: {e}") |
|
return {"error": str(e)} |
|
|
|
def check_language(full_text: str) -> Dict[str, Any]: |
|
"""Check language quality.""" |
|
return { |
|
"plain_language": bool(re.search(r'plain language summary', full_text, re.IGNORECASE)), |
|
"readability_issues": False, |
|
"language_issues": check_language_issues(full_text) |
|
} |
|
|
|
def check_figure_order(full_text: str) -> Dict[str, Any]: |
|
"""Check if figures are referred to in sequential order.""" |
|
figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)' |
|
figure_references = re.findall(figure_pattern, full_text, re.IGNORECASE) |
|
figure_numbers = sorted(set(int(num) for num in figure_references)) |
|
|
|
is_sequential = all(a + 1 == b for a, b in zip(figure_numbers, figure_numbers[1:])) |
|
|
|
if figure_numbers: |
|
expected_figures = set(range(1, max(figure_numbers) + 1)) |
|
missing_figures = list(expected_figures - set(figure_numbers)) |
|
else: |
|
missing_figures = None |
|
|
|
duplicates = [num for num, count in Counter(figure_references).items() if count > 1] |
|
duplicate_numbers = [int(num) for num in duplicates] |
|
not_mentioned = list(set(figure_references) - set(duplicates)) |
|
|
|
return { |
|
"sequential_order": is_sequential, |
|
"figure_count": len(figure_numbers), |
|
"missing_figures": missing_figures, |
|
"figure_order": figure_numbers, |
|
"duplicate_references": duplicates, |
|
"not_mentioned": not_mentioned |
|
} |
|
|
|
def check_reference_order(full_text: str) -> Dict[str, Any]: |
|
"""Check if references in the main body text are in order.""" |
|
reference_pattern = r'\[(\d+)\]' |
|
references = re.findall(reference_pattern, full_text) |
|
ref_numbers = [int(ref) for ref in references] |
|
|
|
max_ref = 0 |
|
out_of_order = [] |
|
for i, ref in enumerate(ref_numbers): |
|
if ref > max_ref + 1: |
|
out_of_order.append((i+1, ref)) |
|
max_ref = max(max_ref, ref) |
|
|
|
all_refs = set(range(1, max_ref + 1)) |
|
used_refs = set(ref_numbers) |
|
missing_refs = list(all_refs - used_refs) |
|
|
|
return { |
|
"max_reference": max_ref, |
|
"out_of_order": out_of_order, |
|
"missing_references": missing_refs, |
|
"is_ordered": len(out_of_order) == 0 and len(missing_refs) == 0 |
|
} |
|
|
|
def highlight_issues_in_pdf(file, language_matches: List[Dict[str, Any]]) -> bytes: |
|
""" |
|
Highlights language issues in the PDF and returns the annotated PDF as bytes. |
|
This function maps LanguageTool matches to specific words in the PDF |
|
and highlights those words. |
|
""" |
|
try: |
|
|
|
doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file) |
|
print(f"Opened PDF with {len(doc)} pages.") |
|
print(language_matches) |
|
|
|
word_list = [] |
|
for page_number in range(len(doc)): |
|
page = doc[page_number] |
|
words = page.get_text("words") |
|
for w in words: |
|
|
|
word_text = w[4] |
|
|
|
if '[' in word_text: |
|
word_text = word_text.replace('[', ' [') |
|
word_list.append((page_number, word_text, w[0], w[1], w[2], w[3])) |
|
print(f"Total words extracted: {len(word_list)}") |
|
|
|
|
|
concatenated_text = " ".join([w[1] for w in word_list]) |
|
print(f"Concatenated text length: {len(concatenated_text)} characters.") |
|
|
|
|
|
for idx, issue in enumerate(language_matches, start=1): |
|
offset = issue["offset"] |
|
length = issue["length"] |
|
error_text = concatenated_text[offset:offset+length] |
|
print(f"\nIssue {idx}: '{error_text}' at offset {offset} with length {length}") |
|
|
|
|
|
current_pos = 0 |
|
target_words = [] |
|
for word in word_list: |
|
word_text = word[1] |
|
word_length = len(word_text) + 1 |
|
|
|
if current_pos + word_length > offset and current_pos < offset + length: |
|
target_words.append(word) |
|
current_pos += word_length |
|
|
|
if not target_words: |
|
print("No matching words found for this issue.") |
|
continue |
|
|
|
initial_x = target_words[0][2] |
|
initial_y = target_words[0][3] |
|
final_x = target_words[len(target_words)-1][4] |
|
final_y = target_words[len(target_words)-1][5] |
|
issue["coordinates"] = [initial_x, initial_y, final_x, final_y] |
|
issue["page"] = target_words[0][0] + 1 |
|
|
|
for target in target_words: |
|
page_num, word_text, x0, y0, x1, y1 = target |
|
page = doc[page_num] |
|
|
|
rect = fitz.Rect(x0 - 1, y0 - 1, x1 + 1, y1 + 1) |
|
|
|
highlight = page.add_highlight_annot(rect) |
|
highlight.set_colors(stroke=(1, 1, 0)) |
|
highlight.update() |
|
print(f"Highlighted '{word_text}' on page {page_num + 1} at position ({x0}, {y0}, {x1}, {y1})") |
|
|
|
|
|
|
|
byte_stream = io.BytesIO() |
|
doc.save(byte_stream) |
|
annotated_pdf_bytes = byte_stream.getvalue() |
|
doc.close() |
|
|
|
|
|
with open("annotated_temp.pdf", "wb") as f: |
|
f.write(annotated_pdf_bytes) |
|
print("Annotated PDF saved as 'annotated_temp.pdf' for manual verification.") |
|
|
|
return language_matches, annotated_pdf_bytes |
|
except Exception as e: |
|
print(f"Error in highlighting PDF: {e}") |
|
return b"" |
|
|
|
|
|
|
|
|
|
|
|
|
|
def analyze_pdf(filepath: str) -> Tuple[Dict[str, Any], bytes]: |
|
"""Analyzes the PDF for language issues and returns results and annotated PDF.""" |
|
try: |
|
full_text = extract_pdf_text(filepath) |
|
if not full_text: |
|
return {"error": "Failed to extract text from PDF."}, None |
|
|
|
language_issues = check_language_issues(full_text) |
|
|
|
|
|
if "error" in language_issues: |
|
return {"error": language_issues["error"]}, None |
|
|
|
issues = language_issues.get("issues", []) |
|
|
|
if issues: |
|
language_issues, annotated_pdf = highlight_issues_in_pdf(filepath, issues) |
|
return {"issues": language_issues}, annotated_pdf |
|
else: |
|
|
|
return {"message": "No language issues found in the uploaded PDF."}, None |
|
except Exception as e: |
|
|
|
return {"error": str(e)}, None |
|
|
|
|
|
|
|
|
|
|
|
def process_upload(file): |
|
""" |
|
Process the uploaded PDF file and return analysis results and annotated PDF. |
|
""" |
|
|
|
if file is None: |
|
return json.dumps({"error": "No file uploaded"}, indent=2), None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
temp_input = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') |
|
temp_input.write(file) |
|
temp_input_path = temp_input.name |
|
print(temp_input_path) |
|
|
|
|
|
results, annotated_pdf = analyze_pdf(temp_input_path) |
|
|
|
print(results) |
|
results_json = json.dumps(results, indent=2) |
|
|
|
|
|
os.unlink(temp_input_path) |
|
|
|
|
|
if annotated_pdf: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file: |
|
tmp_file.write(annotated_pdf) |
|
return results_json, tmp_file.name |
|
|
|
return results_json, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_interface(): |
|
with gr.Blocks(title="PDF Analyzer") as interface: |
|
gr.Markdown("# PDF Analyzer") |
|
gr.Markdown("Upload a PDF document to analyze its structure, references, language, and more.") |
|
|
|
with gr.Row(): |
|
file_input = gr.File( |
|
label="Upload PDF", |
|
file_types=[".pdf"], |
|
type="binary" |
|
) |
|
|
|
with gr.Row(): |
|
analyze_btn = gr.Button("Analyze PDF") |
|
|
|
with gr.Row(): |
|
results_output = gr.JSON( |
|
label="Analysis Results", |
|
show_label=True |
|
) |
|
|
|
with gr.Row(): |
|
pdf_output = gr.File( |
|
label="Annotated PDF", |
|
show_label=True |
|
) |
|
|
|
analyze_btn.click( |
|
fn=process_upload, |
|
inputs=[file_input], |
|
outputs=[results_output, pdf_output] |
|
) |
|
|
|
return interface |
|
|
|
if __name__ == "__main__": |
|
interface = create_interface() |
|
interface.launch( |
|
share=True, |
|
|
|
server_port=None |
|
) |