|
import pymupdf4llm |
|
from markdown_it import MarkdownIt |
|
from mdit_plain.renderer import RendererPlain |
|
import os |
|
import re |
|
from typing import Tuple, Optional, List, Dict, Any |
|
|
|
import fitz |
|
from collections import defaultdict, Counter |
|
import language_tool_python |
|
|
|
import json |
|
import traceback |
|
import io |
|
import tempfile |
|
|
|
import gradio as gr |
|
|
|
|
|
os.environ['JAVA_HOME'] = '/usr/lib/jvm/java-11-openjdk-amd64' |
|
|
|
|
|
|
|
def convert_markdown_to_plain_text(markdown_text: str) -> str: |
|
""" |
|
Converts a Markdown string to plain text. |
|
""" |
|
if not markdown_text: |
|
return "" |
|
try: |
|
parser = MarkdownIt(renderer_cls=RendererPlain) |
|
plain_text = parser.render(markdown_text) |
|
return plain_text |
|
except Exception as e: |
|
print(f"Error converting Markdown to plain text: {e}") |
|
return markdown_text |
|
|
|
|
|
def convert_rect_to_dict(rect: fitz.Rect) -> Optional[Dict[str, float]]: |
|
"""Converts a fitz.Rect object to a dictionary.""" |
|
if not rect or not isinstance(rect, fitz.Rect): |
|
print(f"Warning: Invalid rect object received: {rect}") |
|
return None |
|
return { |
|
"x0": rect.x0, |
|
"y0": rect.y0, |
|
"x1": rect.x1, |
|
"y1": rect.y1, |
|
"width": rect.width, |
|
"height": rect.height |
|
} |
|
|
|
|
|
def try_map_issues_to_page_rects( |
|
issues_to_map_for_context: List[Dict[str, Any]], |
|
pdf_rects: List[fitz.Rect], |
|
page_number_for_mapping: int |
|
) -> int: |
|
mapped_count = 0 |
|
num_issues_to_try = len(issues_to_map_for_context) |
|
num_available_rects = len(pdf_rects) |
|
limit = min(num_issues_to_try, num_available_rects) |
|
|
|
for i in range(limit): |
|
issue_to_update = issues_to_map_for_context[i] |
|
if issue_to_update['is_mapped_to_pdf']: |
|
continue |
|
pdf_rect = pdf_rects[i] |
|
coord_dict = convert_rect_to_dict(pdf_rect) |
|
if coord_dict: |
|
issue_to_update['pdf_coordinates_list'] = [coord_dict] |
|
issue_to_update['is_mapped_to_pdf'] = True |
|
issue_to_update['mapped_page_number'] = page_number_for_mapping |
|
mapped_count += 1 |
|
else: |
|
print(f" Warning: Could not convert rect for context '{issue_to_update['context_text'][:30]}...' on page {page_number_for_mapping}") |
|
return mapped_count |
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_pdf_text(file_input: Any) -> str: |
|
"""Extracts full text from a PDF file using PyMuPDF4LLM (as Markdown).""" |
|
temp_file_path_for_pymupdf4llm = None |
|
actual_path_to_process = None |
|
try: |
|
if isinstance(file_input, str): |
|
actual_path_to_process = file_input |
|
elif hasattr(file_input, 'read') and callable(file_input.read): |
|
temp_file_obj = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) |
|
temp_file_path_for_pymupdf4llm = temp_file_obj.name |
|
file_input.seek(0) |
|
temp_file_obj.write(file_input.read()) |
|
temp_file_obj.close() |
|
actual_path_to_process = temp_file_path_for_pymupdf4llm |
|
else: |
|
raise ValueError("Input 'file_input' must be a file path (str) or a file-like object.") |
|
|
|
doc_for_page_count = fitz.open(actual_path_to_process) |
|
page_count = len(doc_for_page_count) |
|
doc_for_page_count.close() |
|
print(f"PDF has {page_count} pages. Extracting Markdown using pymupdf4llm.") |
|
|
|
markdown_text = pymupdf4llm.to_markdown(actual_path_to_process) |
|
|
|
print(f"Total extracted Markdown text length: {len(markdown_text)} characters.") |
|
return markdown_text |
|
|
|
except Exception as e: |
|
print(f"Error extracting text from PDF: {str(e)}") |
|
traceback.print_exc() |
|
return "" |
|
finally: |
|
if temp_file_path_for_pymupdf4llm and os.path.exists(temp_file_path_for_pymupdf4llm): |
|
os.remove(temp_file_path_for_pymupdf4llm) |
|
|
|
|
|
def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]: |
|
return {term: term.lower() in full_text.lower() for term in search_terms} |
|
|
|
def label_authors(full_text: str) -> str: |
|
|
|
|
|
author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)" |
|
match = re.search(author_line_regex, full_text, re.MULTILINE) |
|
if match: |
|
authors = match.group(1).strip() |
|
return full_text.replace(authors, f"Authors: {authors}") |
|
return full_text |
|
|
|
def check_metadata(plain_text: str) -> Dict[str, Any]: |
|
return { |
|
"author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', plain_text)), |
|
"list_of_authors": bool(re.search(r'Authors?:', plain_text, re.IGNORECASE)), |
|
"keywords_list": bool(re.search(r'Keywords?:', plain_text, re.IGNORECASE)), |
|
"word_count": len(plain_text.split()) or "Missing" |
|
} |
|
|
|
def check_disclosures(plain_text: str) -> Dict[str, bool]: |
|
search_terms = [ |
|
"conflict of interest statement", |
|
"ethics statement", |
|
"funding statement", |
|
"data access statement" |
|
] |
|
results = check_text_presence(plain_text, search_terms) |
|
has_author_contribution = ("author contribution statement" in plain_text.lower() or |
|
"author contributions statement" in plain_text.lower()) |
|
results["author contribution statement"] = has_author_contribution |
|
return results |
|
|
|
def check_figures_and_tables(plain_text: str) -> Dict[str, bool]: |
|
return { |
|
"figures_with_citations": bool(re.search(r'Figure \d+.*?citation', plain_text, re.IGNORECASE)), |
|
"figures_legends": bool(re.search(r'Figure \d+.*?legend', plain_text, re.IGNORECASE)), |
|
"tables_legends": bool(re.search(r'Table \d+.*?legend', plain_text, re.IGNORECASE)) |
|
} |
|
|
|
def check_references_summary(plain_text: str) -> Dict[str, Any]: |
|
abstract_candidate = plain_text[:2000] |
|
return { |
|
"old_references": bool(re.search(r'\b19[0-9]{2}\b', plain_text)), |
|
"citations_in_abstract": bool(re.search(r'\[\d+\]', abstract_candidate, re.IGNORECASE)) or \ |
|
bool(re.search(r'\bcit(?:ation|ed)\b', abstract_candidate, re.IGNORECASE)), |
|
"reference_count": len(re.findall(r'\[\d+(?:,\s*\d+)*\]', plain_text)), |
|
"self_citations": bool(re.search(r'Self-citation', plain_text, re.IGNORECASE)) |
|
} |
|
|
|
def check_structure(plain_text: str) -> Dict[str, bool]: |
|
text_lower = plain_text.lower() |
|
return { |
|
"imrad_structure": all(section.lower() in text_lower for section in ["introduction", "method", "result", "discussion"]), |
|
"abstract_structure": "structured abstract" in text_lower |
|
} |
|
|
|
def check_language_issues_and_regex(markdown_text_from_pdf: str) -> Dict[str, Any]: |
|
""" |
|
Performs LanguageTool and specific regex checks on text derived from PDF's Markdown. |
|
Filters issues to only include those between "abstract" and "references/bibliography". |
|
Returns a list of issue dictionaries with fields for mapping. |
|
""" |
|
if not markdown_text_from_pdf.strip(): |
|
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""} |
|
|
|
plain_text_from_markdown = convert_markdown_to_plain_text(markdown_text_from_pdf) |
|
text_for_analysis = plain_text_from_markdown.replace('\n', ' ') |
|
text_for_analysis = re.sub(r'\s+', ' ', text_for_analysis).strip() |
|
|
|
if not text_for_analysis: |
|
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""} |
|
|
|
|
|
text_for_analysis_lower = text_for_analysis.lower() |
|
|
|
abstract_match = re.search(r'\babstract\b', text_for_analysis_lower) |
|
|
|
content_start_index = abstract_match.start() if abstract_match else 0 |
|
if abstract_match: |
|
print(f"Found 'abstract' at index {content_start_index}") |
|
else: |
|
print(f"Did not find 'abstract', starting language analysis from index 0") |
|
|
|
references_match = re.search(r'\breferences\b', text_for_analysis_lower) |
|
bibliography_match = re.search(r'\bbibliography\b', text_for_analysis_lower) |
|
|
|
content_end_index = len(text_for_analysis) |
|
|
|
if references_match and bibliography_match: |
|
content_end_index = min(references_match.start(), bibliography_match.start()) |
|
print(f"Found 'references' at {references_match.start()} and 'bibliography' at {bibliography_match.start()}. Using {content_end_index} as end boundary.") |
|
elif references_match: |
|
content_end_index = references_match.start() |
|
print(f"Found 'references' at {content_end_index}. Using it as end boundary.") |
|
elif bibliography_match: |
|
content_end_index = bibliography_match.start() |
|
print(f"Found 'bibliography' at {content_end_index}. Using it as end boundary.") |
|
else: |
|
print(f"Did not find 'references' or 'bibliography'. Language analysis up to end of text (index {content_end_index}).") |
|
|
|
|
|
|
|
|
|
if content_start_index >= content_end_index: |
|
print(f"Warning: Content start index ({content_start_index}) is not before content end index ({content_end_index}). No language issues will be reported from this range.") |
|
|
|
|
|
tool = None |
|
processed_issues: List[Dict[str, Any]] = [] |
|
|
|
try: |
|
tool = language_tool_python.LanguageTool('en-US') |
|
raw_lt_matches = tool.check(text_for_analysis) |
|
|
|
|
|
rules_to_ignore = { |
|
"EN_SPLIT_WORDS_HYPHEN", |
|
"MORFOLOGIK_RULE_EN_US" |
|
} |
|
|
|
lt_issues_in_range = 0 |
|
for idx, match in enumerate(raw_lt_matches): |
|
|
|
if match.ruleId in rules_to_ignore: |
|
continue |
|
|
|
|
|
if not (content_start_index <= match.offset < content_end_index): |
|
continue |
|
lt_issues_in_range +=1 |
|
|
|
context_str = text_for_analysis[match.offset : match.offset + match.errorLength] |
|
processed_issues.append({ |
|
'_internal_id': f"lt_{idx}", |
|
'ruleId': match.ruleId, |
|
'message': match.message, |
|
'context_text': context_str, |
|
'offset_in_text': match.offset, |
|
'error_length': match.errorLength, |
|
'replacements_suggestion': match.replacements[:3] if match.replacements else [], |
|
'category_name': match.category, |
|
'is_mapped_to_pdf': False, |
|
'pdf_coordinates_list': [], |
|
'mapped_page_number': -1 |
|
}) |
|
print(f"LanguageTool found {len(raw_lt_matches)} raw issues, {lt_issues_in_range} issues within defined content range.") |
|
|
|
regex_pattern = r'\b(\w+)\[(\d+)\]' |
|
regex_matches = list(re.finditer(regex_pattern, text_for_analysis)) |
|
|
|
regex_issues_in_range = 0 |
|
for reg_idx, match in enumerate(regex_matches): |
|
|
|
if not (content_start_index <= match.start() < content_end_index): |
|
continue |
|
regex_issues_in_range += 1 |
|
|
|
word = match.group(1) |
|
number = match.group(2) |
|
processed_issues.append({ |
|
'_internal_id': f"regex_{reg_idx}", |
|
'ruleId': "SPACE_BEFORE_BRACKET", |
|
'message': f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.", |
|
'context_text': text_for_analysis[match.start():match.end()], |
|
'offset_in_text': match.start(), |
|
'error_length': match.end() - match.start(), |
|
'replacements_suggestion': [f"{word} [{number}]"], |
|
'category_name': "Formatting", |
|
'is_mapped_to_pdf': False, |
|
'pdf_coordinates_list': [], |
|
'mapped_page_number': -1 |
|
}) |
|
print(f"Regex check found {len(regex_matches)} raw matches, {regex_issues_in_range} issues within defined content range.") |
|
|
|
return { |
|
"total_issues": len(processed_issues), |
|
"issues_list": processed_issues, |
|
"text_used_for_analysis": text_for_analysis |
|
} |
|
except Exception as e: |
|
print(f"Error in check_language_issues_and_regex: {e}") |
|
traceback.print_exc() |
|
return {"error": str(e), "total_issues": 0, "issues_list": [], "text_used_for_analysis": text_for_analysis} |
|
finally: |
|
if tool: tool.close() |
|
|
|
def check_figure_order(plain_text: str) -> Dict[str, Any]: |
|
figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)' |
|
|
|
figure_references_raw = re.findall(figure_pattern, plain_text, re.IGNORECASE) |
|
|
|
|
|
|
|
valid_figure_numbers_int: List[int] = [] |
|
for num_str in figure_references_raw: |
|
if num_str.isdigit(): |
|
valid_figure_numbers_int.append(int(num_str)) |
|
|
|
|
|
|
|
|
|
if not valid_figure_numbers_int: |
|
|
|
return { |
|
"sequential_order_of_unique_figures": True, |
|
"figure_count_unique": 0, |
|
"missing_figures_in_sequence_to_max": [], |
|
"figure_order_as_encountered": [], |
|
"duplicate_references_to_same_figure_number": [], |
|
"figures_mentioned_only_once": [] |
|
} |
|
|
|
|
|
unique_sorted_figures: List[int] = sorted(list(set(valid_figure_numbers_int))) |
|
|
|
|
|
|
|
is_sequential = True |
|
if len(unique_sorted_figures) > 1: |
|
is_sequential = all(unique_sorted_figures[i] + 1 == unique_sorted_figures[i+1] |
|
for i in range(len(unique_sorted_figures) - 1)) |
|
|
|
|
|
|
|
missing_figures: List[int] = [] |
|
|
|
max_found_figure = unique_sorted_figures[-1] |
|
expected_figures_up_to_max = set(range(1, max_found_figure + 1)) |
|
actual_figures_found_set = set(unique_sorted_figures) |
|
missing_figures = sorted(list(expected_figures_up_to_max - actual_figures_found_set)) |
|
|
|
|
|
counts = Counter(valid_figure_numbers_int) |
|
|
|
|
|
duplicate_refs: List[int] = sorted([num for num, count in counts.items() if count > 1]) |
|
|
|
|
|
|
|
|
|
figures_mentioned_only_once: List[int] = sorted([ |
|
num for num, count in counts.items() if count == 1 |
|
]) |
|
|
|
return { |
|
"sequential_order_of_unique_figures": is_sequential, |
|
"figure_count_unique": len(unique_sorted_figures), |
|
"missing_figures_in_sequence_to_max": missing_figures, |
|
"figure_order_as_encountered": valid_figure_numbers_int, |
|
"duplicate_references_to_same_figure_number": duplicate_refs, |
|
"figures_mentioned_only_once": figures_mentioned_only_once |
|
} |
|
|
|
def check_reference_order(plain_text: str) -> Dict[str, Any]: |
|
reference_pattern = r'\[(\d+)\]' |
|
references_str = re.findall(reference_pattern, plain_text) |
|
ref_numbers_int = [int(ref) for ref in references_str if ref.isdigit()] |
|
|
|
max_ref_val = 0 |
|
out_of_order_details = [] |
|
|
|
if ref_numbers_int: |
|
max_ref_val = max(ref_numbers_int) |
|
current_max_seen_in_text = 0 |
|
for i, ref in enumerate(ref_numbers_int): |
|
if ref < current_max_seen_in_text : |
|
out_of_order_details.append({ |
|
"position_in_text_occurrences": i + 1, |
|
"value": ref, |
|
"previous_max_value_seen": current_max_seen_in_text, |
|
"message": f"Reference [{ref}] appeared after a higher reference [{current_max_seen_in_text}] was already cited." |
|
}) |
|
current_max_seen_in_text = max(current_max_seen_in_text, ref) |
|
|
|
all_expected_refs_up_to_max = set(range(1, max_ref_val + 1)) if max_ref_val > 0 else set() |
|
used_refs_set = set(ref_numbers_int) |
|
missing_refs_in_sequence_to_max = sorted(list(all_expected_refs_up_to_max - used_refs_set)) |
|
|
|
is_ordered_in_text = all(ref_numbers_int[i] <= ref_numbers_int[i+1] for i in range(len(ref_numbers_int)-1)) |
|
|
|
return { |
|
"max_reference_number_cited": max_ref_val, |
|
"out_of_order_citations_details": out_of_order_details, |
|
"missing_references_up_to_max_cited": missing_refs_in_sequence_to_max, |
|
"is_citation_order_non_decreasing_in_text": is_ordered_in_text |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def analyze_pdf(filepath_or_stream: Any) -> Tuple[Dict[str, Any], None]: |
|
doc_for_mapping = None |
|
temp_fitz_file_path = None |
|
|
|
try: |
|
markdown_text = extract_pdf_text(filepath_or_stream) |
|
if not markdown_text: |
|
return {"error": "Failed to extract text (Markdown) from PDF."}, None |
|
|
|
plain_text_for_general_checks = convert_markdown_to_plain_text(markdown_text) |
|
cleaned_plain_text_for_regex = re.sub(r'\s+', ' ', plain_text_for_general_checks.replace('\n', ' ')).strip() |
|
|
|
|
|
language_and_regex_issue_report = check_language_issues_and_regex(markdown_text) |
|
|
|
if "error" in language_and_regex_issue_report: |
|
return {"error": f"Language/Regex check error: {language_and_regex_issue_report['error']}"}, None |
|
|
|
detailed_issues_for_mapping = language_and_regex_issue_report.get("issues_list", []) |
|
|
|
if detailed_issues_for_mapping: |
|
|
|
if isinstance(filepath_or_stream, str): |
|
pdf_path_for_fitz = filepath_or_stream |
|
elif hasattr(filepath_or_stream, 'read') and callable(filepath_or_stream.read): |
|
filepath_or_stream.seek(0) |
|
temp_fitz_file = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) |
|
temp_fitz_file_path = temp_fitz_file.name |
|
temp_fitz_file.write(filepath_or_stream.read()) |
|
temp_fitz_file.close() |
|
pdf_path_for_fitz = temp_fitz_file_path |
|
else: |
|
|
|
return {"error": "Invalid PDF input for coordinate mapping."}, None |
|
|
|
try: |
|
doc_for_mapping = fitz.open(pdf_path_for_fitz) |
|
if doc_for_mapping.page_count > 0: |
|
print(f"\n--- Mapping {len(detailed_issues_for_mapping)} Issues (filtered) to PDF Coordinates ---") |
|
|
|
if detailed_issues_for_mapping: |
|
for page_idx in range(doc_for_mapping.page_count): |
|
page = doc_for_mapping[page_idx] |
|
current_page_num_1_based = page_idx + 1 |
|
|
|
unmapped_issues_on_this_page_by_context = defaultdict(list) |
|
for issue_dict in detailed_issues_for_mapping: |
|
if not issue_dict['is_mapped_to_pdf']: |
|
unmapped_issues_on_this_page_by_context[issue_dict['context_text']].append(issue_dict) |
|
|
|
if not unmapped_issues_on_this_page_by_context: |
|
if all(iss['is_mapped_to_pdf'] for iss in detailed_issues_for_mapping): break |
|
continue |
|
|
|
for ctx_str, issues_for_ctx in unmapped_issues_on_this_page_by_context.items(): |
|
if not ctx_str.strip(): continue |
|
try: |
|
|
|
|
|
pdf_rects = page.search_for(ctx_str, flags=fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE) |
|
if pdf_rects: |
|
try_map_issues_to_page_rects(issues_for_ctx, pdf_rects, current_page_num_1_based) |
|
except Exception as search_exc: |
|
print(f"Warning: Error searching for context '{ctx_str[:30]}' on page {current_page_num_1_based}: {search_exc}") |
|
total_mapped = sum(1 for iss in detailed_issues_for_mapping if iss['is_mapped_to_pdf']) |
|
print(f"Finished coordinate mapping. Mapped issues: {total_mapped}/{len(detailed_issues_for_mapping)}.") |
|
else: |
|
print("No language/regex issues found within the defined content boundaries to map.") |
|
except Exception as e_map: |
|
print(f"Error during PDF coordinate mapping: {e_map}") |
|
traceback.print_exc() |
|
finally: |
|
if doc_for_mapping: doc_for_mapping.close() |
|
if temp_fitz_file_path and os.path.exists(temp_fitz_file_path): |
|
os.unlink(temp_fitz_file_path) |
|
|
|
final_formatted_issues_list = [] |
|
for issue_data in detailed_issues_for_mapping: |
|
page_num_for_json = 0 |
|
coords_for_json = [] |
|
if issue_data['is_mapped_to_pdf'] and issue_data['pdf_coordinates_list']: |
|
|
|
coord_dict = issue_data['pdf_coordinates_list'][0] |
|
coords_for_json = [coord_dict['x0'], coord_dict['y0'], coord_dict['x1'], coord_dict['y1']] |
|
page_num_for_json = issue_data['mapped_page_number'] |
|
|
|
final_formatted_issues_list.append({ |
|
"message": issue_data['message'], |
|
"context": issue_data['context_text'], |
|
"suggestions": issue_data['replacements_suggestion'], |
|
"category": issue_data['category_name'], |
|
"rule_id": issue_data['ruleId'], |
|
"offset": issue_data['offset_in_text'], |
|
"length": issue_data['error_length'], |
|
"coordinates": coords_for_json, |
|
"page": page_num_for_json |
|
}) |
|
|
|
results = { |
|
"issues": final_formatted_issues_list, |
|
"document_checks": { |
|
"metadata": check_metadata(cleaned_plain_text_for_regex), |
|
"disclosures": check_disclosures(cleaned_plain_text_for_regex), |
|
"figures_and_tables": check_figures_and_tables(cleaned_plain_text_for_regex), |
|
"references_summary": check_references_summary(cleaned_plain_text_for_regex), |
|
"structure": check_structure(cleaned_plain_text_for_regex), |
|
"figure_order_analysis": check_figure_order(cleaned_plain_text_for_regex), |
|
"reference_order_analysis": check_reference_order(cleaned_plain_text_for_regex), |
|
"plain_language_summary_present": bool(re.search(r'plain language summary', cleaned_plain_text_for_regex, re.IGNORECASE)), |
|
"readability_issues_detected": False, |
|
} |
|
} |
|
|
|
return results, None |
|
|
|
except Exception as e: |
|
print(f"Overall analysis error in analyze_pdf: {e}") |
|
traceback.print_exc() |
|
|
|
if doc_for_mapping: doc_for_mapping.close() |
|
if temp_fitz_file_path and os.path.exists(temp_fitz_file_path): |
|
os.unlink(temp_fitz_file_path) |
|
return {"error": str(e)}, None |
|
|
|
|
|
|
|
|
|
|
|
def process_upload(file_data_binary: bytes) -> Tuple[str, Optional[str]]: |
|
if file_data_binary is None: |
|
return json.dumps({"error": "No file uploaded"}, indent=2), None |
|
|
|
temp_input_path = None |
|
try: |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_input_file: |
|
temp_input_file.write(file_data_binary) |
|
temp_input_path = temp_input_file.name |
|
print(f"Temporary PDF for analysis: {temp_input_path}") |
|
|
|
results_dict, _ = analyze_pdf(temp_input_path) |
|
|
|
results_json = json.dumps(results_dict, indent=2, ensure_ascii=False) |
|
return results_json, None |
|
|
|
except Exception as e: |
|
print(f"Error in process_upload: {e}") |
|
error_message = json.dumps({"error": str(e), "traceback": traceback.format_exc()}, indent=2) |
|
return error_message, None |
|
finally: |
|
if temp_input_path and os.path.exists(temp_input_path): |
|
os.unlink(temp_input_path) |
|
print(f"Cleaned up temporary file: {temp_input_path}") |
|
|
|
|
|
def create_interface(): |
|
with gr.Blocks(title="PDF Analyzer") as interface: |
|
gr.Markdown("# PDF Analyzer") |
|
gr.Markdown("Upload a PDF document to analyze its structure, references, language, and more. Language issues will include PDF coordinates if found, and are filtered to appear between 'Abstract' and 'References/Bibliography'.") |
|
|
|
with gr.Row(): |
|
file_input = gr.File( |
|
label="Upload PDF", |
|
file_types=[".pdf"], |
|
type="binary" |
|
) |
|
|
|
with gr.Row(): |
|
analyze_btn = gr.Button("Analyze PDF") |
|
|
|
with gr.Row(): |
|
results_output = gr.JSON( |
|
label="Analysis Results (Coordinates for issues in 'issues' list)", |
|
show_label=True |
|
) |
|
|
|
with gr.Row(): |
|
|
|
pdf_output = gr.File( |
|
label="Annotated PDF (Functionality Removed - View Coordinates in JSON)", |
|
show_label=True, |
|
|
|
) |
|
|
|
analyze_btn.click( |
|
fn=process_upload, |
|
inputs=[file_input], |
|
outputs=[results_output, pdf_output] |
|
) |
|
return interface |
|
|
|
if __name__ == "__main__": |
|
print("\n--- Launching Gradio Interface ---") |
|
|
|
if 'JAVA_HOME' not in os.environ: |
|
|
|
|
|
print("JAVA_HOME is set to:", os.environ.get('JAVA_HOME')) |
|
else: |
|
print("JAVA_HOME is set to:", os.environ.get('JAVA_HOME')) |
|
|
|
|
|
try: |
|
lt_test = language_tool_python.LanguageTool('en-US') |
|
lt_test.close() |
|
print("LanguageTool initialized successfully.") |
|
except Exception as lt_e: |
|
print(f"Warning: Could not initialize LanguageTool. Language checks might fail: {lt_e}") |
|
print("Please ensure Java is installed and JAVA_HOME is correctly set.") |
|
print("For example, on Ubuntu with OpenJDK 11: export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64") |
|
|
|
|
|
interface = create_interface() |
|
interface.launch( |
|
share=False, |
|
server_port=None |
|
) |