File size: 14,544 Bytes
feab938
 
 
 
 
 
 
 
 
 
 
 
 
9e1790e
feab938
9e1790e
 
8cc1285
 
 
 
 
 
 
 
feab938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import streamlit as st
import re
import fitz  # PyMuPDF
from pdfminer.high_level import extract_text
from pdfminer.layout import LAParams
import language_tool_python
from typing import List, Dict, Any, Tuple
from collections import Counter
import json
import traceback
import io
import tempfile
import os
       

# Set JAVA_HOME environment variable
os.environ['JAVA_HOME'] = '/usr/lib/jvm/java-11-openjdk-amd64'

# Optional: Verify Java installation
try:
    java_version = subprocess.check_output(['java', '-version'], stderr=subprocess.STDOUT).decode()
    st.write(f"Java Version: {java_version}")
except Exception as e:
    st.error("Java is not installed correctly.")

# ------------------------------
# Analysis Functions
# ------------------------------

def extract_pdf_text_by_page(file) -> List[str]:
    """Extracts text from a PDF file, page by page, using PyMuPDF."""
    file.seek(0)
    with fitz.open(stream=file.read(), filetype="pdf") as doc:
        return [page.get_text("text") for page in doc]

def extract_pdf_text(file) -> str:
    """Extracts text from a PDF file using pdfminer."""
    file.seek(0)
    return extract_text(file, laparams=LAParams())

def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]:
    """Checks for the presence of required terms in the text."""
    return {term: term.lower() in full_text.lower() for term in search_terms}

def label_authors(full_text: str) -> str:
    """Label authors in the text with 'Authors:' if not already labeled."""
    author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)"
    match = re.search(author_line_regex, full_text, re.MULTILINE)
    if match:
        authors = match.group(1).strip()
        return full_text.replace(authors, f"Authors: {authors}")
    return full_text

def check_metadata(full_text: str) -> Dict[str, Any]:
    """Check for metadata elements."""
    return {
        "author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', full_text)),
        "list_of_authors": bool(re.search(r'Authors?:', full_text, re.IGNORECASE)),
        "keywords_list": bool(re.search(r'Keywords?:', full_text, re.IGNORECASE)),
        "word_count": len(full_text.split()) or "Missing"
    }

def check_disclosures(full_text: str) -> Dict[str, bool]:
    """Check for disclosure statements."""
    search_terms = [
        "author contributions statement",
        "conflict of interest statement",
        "ethics statement",
        "funding statement",
        "data access statement"
    ]
    return check_text_presence(full_text, search_terms)

def check_figures_and_tables(full_text: str) -> Dict[str, bool]:
    """Check for figures and tables."""
    return {
        "figures_with_citations": bool(re.search(r'Figure \d+.*?citation', full_text, re.IGNORECASE)),
        "figures_legends": bool(re.search(r'Figure \d+.*?legend', full_text, re.IGNORECASE)),
        "tables_legends": bool(re.search(r'Table \d+.*?legend', full_text, re.IGNORECASE))
    }

def check_references(full_text: str) -> Dict[str, Any]:
    """Check for references."""
    return {
        "old_references": bool(re.search(r'\b19[0-9]{2}\b', full_text)),
        "citations_in_abstract": bool(re.search(r'\b(citation|reference)\b', full_text[:1000], re.IGNORECASE)),
        "reference_count": len(re.findall(r'\[.*?\]', full_text)),
        "self_citations": bool(re.search(r'Self-citation', full_text, re.IGNORECASE))
    }

def check_structure(full_text: str) -> Dict[str, bool]:
    """Check document structure."""
    return {
        "imrad_structure": all(section in full_text for section in ["Introduction", "Methods", "Results", "Discussion"]),
        "abstract_structure": "structured abstract" in full_text.lower()
    }

def check_language_issues(full_text: str) -> Dict[str, Any]:
    """Check for issues with capitalization, hyphenation, punctuation, spacing, etc."""
    language_tool = language_tool_python.LanguageTool('en-US')
    matches = language_tool.check(full_text)
    word_count = len(full_text.split())
    issues_count = len(matches)
    issues_per_1000 = (issues_count / word_count) * 1000 if word_count else 0
    
    serializable_matches = [
        {
            "message": match.message,
            "replacements": match.replacements,
            "offset": match.offset,
            "errorLength": match.errorLength,
            "category": match.category,
            "ruleIssueType": match.ruleIssueType,
            "sentence": match.sentence
        }
        for match in matches
    ]
    
    return {
        "issues_count": issues_count,
        "issues_per_1000": issues_per_1000,
        "failed": issues_per_1000 > 20,
        "matches": serializable_matches
    }

def check_language(full_text: str) -> Dict[str, Any]:
    """Check language quality."""
    return {
        "plain_language": bool(re.search(r'plain language summary', full_text, re.IGNORECASE)),
        "readability_issues": False,  # Placeholder for future implementation
        "language_issues": check_language_issues(full_text)
    }

def check_figure_order(full_text: str) -> Dict[str, Any]:
    """Check if figures are referred to in sequential order."""
    figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)'
    figure_references = re.findall(figure_pattern, full_text, re.IGNORECASE)
    figure_numbers = sorted(set(int(num) for num in figure_references))
    
    is_sequential = all(a + 1 == b for a, b in zip(figure_numbers, figure_numbers[1:]))
    
    if figure_numbers:
        expected_figures = set(range(1, max(figure_numbers) + 1))
        missing_figures = list(expected_figures - set(figure_numbers))
    else:
        missing_figures = None

    duplicates = [num for num, count in Counter(figure_references).items() if count > 1]
    duplicate_numbers = [int(num) for num in duplicates]
    not_mentioned = list(set(figure_references) - set(duplicates))
    
    return {
        "sequential_order": is_sequential,
        "figure_count": len(figure_numbers),
        "missing_figures": missing_figures,
        "figure_order": figure_numbers,
        "duplicate_references": duplicates,
        "not_mentioned": not_mentioned
    }

def check_reference_order(full_text: str) -> Dict[str, Any]:
    """Check if references in the main body text are in order."""
    reference_pattern = r'\[(\d+)\]'
    references = re.findall(reference_pattern, full_text)
    ref_numbers = [int(ref) for ref in references]
    
    max_ref = 0
    out_of_order = []
    for i, ref in enumerate(ref_numbers):
        if ref > max_ref + 1:
            out_of_order.append((i+1, ref))
        max_ref = max(max_ref, ref)
    
    all_refs = set(range(1, max_ref + 1))
    used_refs = set(ref_numbers)
    missing_refs = list(all_refs - used_refs)
    
    return {
        "max_reference": max_ref,
        "out_of_order": out_of_order,
        "missing_references": missing_refs,
        "is_ordered": len(out_of_order) == 0 and len(missing_refs) == 0
    }

def check_reference_style(full_text: str) -> Dict[str, Any]:
    """Check the reference style used in the paper and identify inconsistencies."""
    reference_section_match = re.search(r'References\b([\s\S]*?)(?:\n\S|\Z)', full_text, re.IGNORECASE)
    if not reference_section_match:
        return {"style": "Unknown", "reason": "References section not found", "inconsistent_refs": []}

    references_text = reference_section_match.group(1)
    reference_list = re.split(r'\n(?=\[\d+\]|\d+\.\s|\(\w+,\s*\d{4}\))', references_text)
    references = [ref.strip() for ref in reference_list if ref.strip()]

    styles = []
    inconsistent_refs = []
    patterns = {
        "IEEE": r'^\[\d+\]',
        "Harvard": r'^[A-Z][a-z]+,?\s[A-Z]\.\s\(?\d{4}\)?',
        "APA": r'^[A-Z][a-z]+,?\s[A-Z]\.\s\(?\d{4}\)?',
        "MLA": r'^[A-Z][a-z]+,\s[A-Z][a-z]+\.',
        "Vancouver": r'^\d+\.\s',
        "Chicago": r'^\d+\s[A-Z][a-z]+\s[A-Z]',
    }

    for i, ref in enumerate(references, 1):
        matched = False
        for style, pattern in patterns.items():
            if re.match(pattern, ref):
                styles.append(style)
                matched = True
                break
        if not matched:
            styles.append("Unknown")
            inconsistent_refs.append((i, ref, "Unknown"))

    if not styles:
        return {"style": "Unknown", "reason": "No references found", "inconsistent_refs": []}

    style_counts = Counter(styles)
    majority_style, majority_count = style_counts.most_common(1)[0]

    for i, style in enumerate(styles, 1):
        if style != majority_style and style != "Unknown":
            inconsistent_refs.append((i, references[i-1], style))

    consistency = majority_count / len(styles)

    return {
        "majority_style": majority_style,
        "inconsistent_refs": inconsistent_refs,
        "consistency": consistency
    }

# ------------------------------
# Annotation Functions
# ------------------------------

def highlight_text(page, words, text, annotation):
    """Highlight text and add annotation."""
    text_instances = find_text_instances(words, text)
    highlighted = False
    for inst in text_instances:
        highlight = page.add_highlight_annot(inst)
        highlight.update()
        comment = page.add_text_annot(inst[:2], annotation)
        comment.update()
        highlighted = True
    return highlighted

def find_text_instances(words, text):
    """Find all instances of text in words."""
    text_lower = text.lower()
    text_words = text_lower.split()
    instances = []
    for i in range(len(words) - len(text_words) + 1):
        if all(words[i+j][4].lower() == text_words[j] for j in range(len(text_words))):
            inst = fitz.Rect(words[i][:4])
            for j in range(1, len(text_words)):
                inst = inst | fitz.Rect(words[i+j][:4])
            instances.append(inst)
    return instances

def highlight_issues_in_pdf(file, inconsistent_refs: List[Tuple[int, str, str]], language_matches: List[Dict[str, Any]]) -> bytes:
    """Highlight inconsistent references and add notes for language issues in a single PDF."""
    try:
        file.seek(0)
        doc = fitz.open(stream=file.read(), filetype="pdf")
        added_notes = set()

        for page_number, page in enumerate(doc, start=1):
            words = page.get_text("words")
            
            if inconsistent_refs:
                for ref_num, ref_text, ref_style in inconsistent_refs:
                    annotation_text = f"Reference {ref_num}: Inconsistent style ({ref_style}). Should be consolidated to {ref_style}."
                    highlight_text(page, words, ref_text, annotation_text)

            if language_matches:
                for match in language_matches:
                    issue_text = match['sentence']
                    error_message = f"{match['message']}\nSuggested correction: {match['replacements'][0] if match['replacements'] else 'No suggestion'}"
                    issue_key = (issue_text, error_message)
                    
                    if issue_key not in added_notes:
                        if highlight_text(page, words, issue_text, error_message):
                            added_notes.add(issue_key)

        annotated_pdf_bytes = doc.write()
        doc.close()
        return annotated_pdf_bytes

    except Exception as e:
        print(f"An error occurred while annotating the PDF: {str(e)}")
        traceback.print_exc()
        return b""

# ------------------------------
# Main Analysis Function
# ------------------------------

def analyze_pdf(file) -> Tuple[Dict[str, Any], bytes]:
    """
    Analyze the uploaded PDF and return analysis results and annotated PDF bytes.
    
    Returns:
        Tuple containing:
            - Analysis results as a dictionary.
            - Annotated PDF as bytes.
    """
    try:
        # The 'file' is a BytesIO object provided by Streamlit
        file.seek(0)
        pages_text = extract_pdf_text_by_page(file)
        full_text = extract_pdf_text(file)
        full_text = label_authors(full_text)

        # Perform analyses
        metadata = check_metadata(full_text)
        disclosures = check_disclosures(full_text)
        figures_and_tables = check_figures_and_tables(full_text)
        figure_order = check_figure_order(full_text)
        references = check_references(full_text)
        reference_order = check_reference_order(full_text)
        reference_style = check_reference_style(full_text)
        structure = check_structure(full_text)
        language = check_language(full_text)

        # Compile results
        results = {
            "metadata": metadata,
            "disclosures": disclosures,
            "figures_and_tables": figures_and_tables,
            "figure_order": figure_order,
            "references": references,
            "reference_order": reference_order,
            "reference_style": reference_style,
            "structure": structure,
            "language": language
        }

        # Handle annotations
        inconsistent_refs = reference_style.get("inconsistent_refs", [])
        language_matches = language.get("language_issues", {}).get("matches", [])

        if inconsistent_refs or language_matches:
            annotated_pdf_bytes = highlight_issues_in_pdf(file, inconsistent_refs, language_matches)
        else:
            annotated_pdf_bytes = None

        return results, annotated_pdf_bytes

    except Exception as e:
        error_message = {
            "error": str(e),
            "traceback": traceback.format_exc()
        }
        return error_message, None

# ------------------------------
# Streamlit Interface
# ------------------------------

def main():
    st.title("PDF Analyzer")
    st.write("Upload a PDF document to analyze its structure, references, language, and more.")

    uploaded_file = st.file_uploader("Upload PDF", type=["pdf"])

    if uploaded_file is not None:
        with st.spinner("Analyzing PDF..."):
            results, annotated_pdf = analyze_pdf(uploaded_file)

        st.subheader("Analysis Results")
        st.json(results)

        if annotated_pdf:
            st.subheader("Download Annotated PDF")
            st.download_button(
                label="Download Annotated PDF",
                data=annotated_pdf,
                file_name="annotated.pdf",
                mime="application/pdf"
            )
        else:
            st.success("No issues found. No annotated PDF to download.")

if __name__ == "__main__":
    main()