File size: 6,117 Bytes
40e8eb9
99adcd5
40e8eb9
 
 
 
 
 
a24b0c9
 
9c4f063
a24b0c9
 
9c4f063
9508bb0
 
9c4f063
a24b0c9
9c4f063
a24b0c9
 
 
 
40e8eb9
 
 
9508bb0
 
 
 
 
 
 
9c4f063
9508bb0
 
 
 
 
 
9c4f063
9508bb0
 
 
 
 
 
 
40e8eb9
 
a24b0c9
 
 
 
 
40e8eb9
a24b0c9
 
9c4f063
a24b0c9
 
 
 
 
 
 
 
b87bd64
 
 
a24b0c9
9c4f063
9508bb0
a24b0c9
 
9c4f063
9508bb0
a24b0c9
9c4f063
a24b0c9
 
 
9c4f063
d9a6b52
a24b0c9
 
 
 
 
 
 
 
 
 
 
9c4f063
 
 
 
a24b0c9
 
 
 
9508bb0
 
a24b0c9
 
 
 
9c4f063
a24b0c9
40e8eb9
 
 
 
 
d9a6b52
 
 
 
 
 
40e8eb9
 
 
 
 
 
 
9c4f063
 
40e8eb9
a24b0c9
 
 
40e8eb9
9508bb0
 
 
40e8eb9
9c4f063
 
40e8eb9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# annotations.py
# this is beta-1
import fitz  # PyMuPDF
from typing import List, Dict, Any, Tuple
import language_tool_python
import io

def extract_pdf_text(file) -> str:
    """Extracts full text from a PDF file using PyMuPDF."""
    try:
        # Open the PDF file
        doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file)
        full_text = ""
        for page_num, page in enumerate(doc, start=1):
            text = page.get_text("text")
            full_text += text + "\n"
            print(f"Extracted text from page {page_num}: {len(text)} characters.")
        doc.close()
        print(f"Total extracted text length: {len(full_text)} characters.")
        return full_text
    except Exception as e:
        print(f"Error extracting text from PDF: {e}")
        return ""

def check_language_issues(full_text: str) -> Dict[str, Any]:
    """Check for language issues using LanguageTool."""
    try:
        language_tool = language_tool_python.LanguageTool('en-US')
        matches = language_tool.check(full_text)
        issues = []
        for match in matches:
            issues.append({
                "message": match.message,
                "context": match.context.strip(),
                "suggestions": match.replacements[:3] if match.replacements else [],
                "category": match.category,
                "rule_id": match.ruleId,
                "offset": match.offset,
                "length": match.errorLength
            })
        print(f"Total language issues found: {len(issues)}")
        return {
            "total_issues": len(issues),
            "issues": issues
        }
    except Exception as e:
        print(f"Error checking language issues: {e}")
        return {"error": str(e)}

def highlight_issues_in_pdf(file, language_matches: List[Dict[str, Any]]) -> bytes:
    """
    Highlights language issues in the PDF and returns the annotated PDF as bytes.
    This function maps LanguageTool matches to specific words in the PDF
    and highlights those words.
    """
    try:
        # Open the PDF
        doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file)
        print(f"Opened PDF with {len(doc)} pages.")

        # Extract words with positions from each page
        word_list = []  # List of tuples: (page_number, word, x0, y0, x1, y1)
        for page_number in range(len(doc)):
            page = doc[page_number]
            words = page.get_text("words")  # List of tuples: (x0, y0, x1, y1, "word", block_no, line_no, word_no)
            for w in words:
                word_text = w[4]
                # **Fix:** Insert a space before '[' to ensure "globally [2]" instead of "globally[2]"
                if '[' in word_text:
                    word_text = word_text.replace('[', ' [')
                word_list.append((page_number, word_text, w[0], w[1], w[2], w[3]))
        print(f"Total words extracted: {len(word_list)}")

        # Concatenate all words to form the full text
        concatenated_text = " ".join([w[1] for w in word_list])
        print(f"Concatenated text length: {len(concatenated_text)} characters.")

        # Iterate over each language issue
        for idx, issue in enumerate(language_matches, start=1):
            offset = issue["offset"]
            length = issue["length"]
            error_text = concatenated_text[offset:offset+length]
            print(f"\nIssue {idx}: '{error_text}' at offset {offset} with length {length}")

            # Find the words that fall within the error span
            current_pos = 0
            target_words = []
            for word in word_list:
                word_text = word[1]
                word_length = len(word_text) + 1  # +1 for the space

                if current_pos + word_length > offset and current_pos < offset + length:
                    target_words.append(word)
                current_pos += word_length

            if not target_words:
                print("No matching words found for this issue.")
                continue

            # Add highlight annotations to the target words
            for target in target_words:
                page_num, word_text, x0, y0, x1, y1 = target
                page = doc[page_num]
                # Define a rectangle around the word with some padding
                rect = fitz.Rect(x0 - 1, y0 - 1, x1 + 1, y1 + 1)
                # Add a highlight annotation
                highlight = page.add_highlight_annot(rect)
                highlight.set_colors(stroke=(1, 1, 0))  # Yellow color
                highlight.update()
                print(f"Highlighted '{word_text}' on page {page_num + 1} at position ({x0}, {y0}, {x1}, {y1})")

        # Save annotated PDF to bytes
        byte_stream = io.BytesIO()
        doc.save(byte_stream)
        annotated_pdf_bytes = byte_stream.getvalue()
        doc.close()

        # Save annotated PDF locally for verification
        with open("annotated_temp.pdf", "wb") as f:
            f.write(annotated_pdf_bytes)
        print("Annotated PDF saved as 'annotated_temp.pdf' for manual verification.")

        return annotated_pdf_bytes
    except Exception as e:
        print(f"Error in highlighting PDF: {e}")
        return b""
def analyze_pdf(file) -> Tuple[Dict[str, Any], bytes]:
    """Analyzes the PDF for language issues and returns results and annotated PDF."""
    try:
        # Reset file pointer before reading
        file.seek(0)
        full_text = extract_pdf_text(file)
        if not full_text:
            return {"error": "Failed to extract text from PDF."}, None

        language_issues = check_language_issues(full_text)
        if "error" in language_issues:
            return language_issues, None

        issues = language_issues.get("issues", [])
        # Reset file pointer before highlighting
        file.seek(0)
        annotated_pdf = highlight_issues_in_pdf(file, issues) if issues else None
        return language_issues, annotated_pdf
    except Exception as e:
        return {"error": str(e)}, None