from transformers import AutoModelForSequenceClassification, AutoTokenizer,pipeline import torch import gradio as gr title = "Check our Sexism Detector" description = """ This is a fine-tuned model of BERTweet-large on the Explainable Detection of Online Sexism (EDOS) dataset. It is intended to be used as a classification model for identifying tweets (0 - not sexist; 1 - sexist).""" article = "Try our model in Hungging face using :https://huggingface.co/NLP-LTU/BERTweet-large-sexism-detector" model = AutoModelForSequenceClassification.from_pretrained('NLP-LTU/bertweet-large-sexism-detector') def predict(prompt): tokenizer = AutoTokenizer.from_pretrained('NLP-LTU/bertweet-large-sexism-detector') classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) prediction=classifier(prompt) #label_pred = 'not sexist' if prediction == 0 else 'sexist' return prediction gr.Interface( fn=predict, inputs="textbox", outputs="text", title=title, description=description, article=article, examples=[["Every woman wants to be a model. It's codeword for 'I get everything for free and people want me' "], ["basically I placed more value on her than I should then?"]], ).launch()