Spaces:
Sleeping
Sleeping
File size: 5,226 Bytes
f4bda8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import subprocess
from huggingface_hub import InferenceClient
from PIL import Image
import requests
import json
# ===================== 核心逻辑模块 =====================
# 初始化模型客户端
try:
# 文本聊天模型
client_text = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct")
# 图片生成模型 1
client_image_1 = InferenceClient()
# 图片生成模型 2 (FLUX)
client_image_2 = InferenceClient("black-forest-labs/FLUX.1-dev")
# 更新状态为服务已启动
service_status = "服务已启动,您可以开始使用!"
except Exception as e:
print(f"Error initializing clients: {e}")
service_status = "服务初始化失败,请稍后再试。"
# ---------- 文本聊天模块 ----------
def chat_with_model(messages):
"""
调用文本聊天模型生成对话内容。
"""
try:
response = client_text.chat_completion(messages, max_tokens=100)
return response["choices"][0]["message"]["content"]
except Exception as e:
print(f"Chat generation failed: {e}")
return "聊天生成失败,请稍后再试。"
# ---------- chatgpt-4o-mini 模块 ----------
def chatgpt_4o_mini(Query):
url = 'https://sanbo1200-duck2api.hf.space/completions'
headers = {'Content-Type': 'application/json'}
data = {
"model": "gpt-4o-mini",
"messages": [
{"role": "system", "content": "你是一个辅助机器人"},
{"role": "user", "content": Query}
],
"stream": False
}
# 发起 HTTP 请求
response = requests.post(url, json=data, headers=headers, stream=True)
response.encoding = 'utf-8'
if response.status_code!= 200:
return "请求失败"
else:
json_data = response.json()
return json_data['choices'][0]['message']['content']
# ---------- 图像生成模块 ----------
def image_gen(prompt):
"""
调用两个图像生成模型,生成两个图像。
"""
try:
# 使用服务一 (默认模型)
print(f"Generating image from service 1 with prompt: {prompt}")
image_1 = client_image_1.text_to_image(prompt)
if image_1 is None:
print("Service 1 returned no image.")
# 使用服务二 (FLUX 模型)
print(f"Generating image from service 2 with prompt: {prompt}")
image_2 = client_image_2.text_to_image(prompt)
if image_2 is None:
print("Service 2 returned no image.")
return image_1, image_2 # 返回两个生成的图像
except Exception as e:
print(f"Image generation failed: {e}")
return None, None # 如果生成失败,返回两个空值
# ===================== Gradio 界面构建 =====================
def build_interface():
"""
构建 Gradio 界面布局,包括文本聊天、chatgpt-4o-mini 和图像生成模块。
"""
with gr.Blocks() as demo:
# 服务状态显示区域
status_output = gr.Textbox(label="服务状态", value=service_status, interactive=False)
# 文本聊天模块
with gr.Tab("Llama3.2-11B"):
chatbox_input = gr.Textbox(label="输入你的问题", placeholder="请提问...")
chatbox_output = gr.Textbox(label="回答")
chatbox_button = gr.Button("发送")
def chat_handler(user_input):
messages = [{"role": "user", "content": user_input}]
return chat_with_model(messages)
chatbox_button.click(chat_handler, inputs=chatbox_input, outputs=chatbox_output)
# chatgpt-4o-mini 模块
with gr.Tab("gpt4o"):
chatgpt_input = gr.Textbox(label="输入你的问题", placeholder="请提问...")
chatgpt_output = gr.Textbox(label="回答")
chatgpt_button = gr.Button("发送")
def chatgpt_handler(user_input):
return chatgpt_4o_mini(user_input)
chatgpt_button.click(chatgpt_handler, inputs=chatgpt_input, outputs=chatgpt_output)
# 图像生成模块
with gr.Tab("图像生成"):
image_prompt = gr.Textbox(label="图像提示词", placeholder="描述你想生成的图像")
# 创建 Row 布局,左右分布图像
with gr.Row():
image_output_1 = gr.Image(label="服务一生成的图像", elem_id="image_1", interactive=True)
image_output_2 = gr.Image(label="服务二生成的图像", elem_id="image_2", interactive=True)
image_button = gr.Button("生成图像")
# 处理图像生成请求
def image_handler(prompt):
img_1, img_2 = image_gen(prompt)
return img_1, img_2
image_button.click(image_handler, inputs=image_prompt, outputs=[image_output_1, image_output_2])
gr.Markdown("### 使用说明")
gr.Markdown("本助手支持文本聊天、chatgpt-4o-mini 和图像生成功能,使用上方选项卡切换不同功能。")
return demo
# 启动 Gradio 界面
if __name__ == "__main__":
demo = build_interface()
demo.launch()
|