PDFTranslate / pdf2zh /doclayout.py
sanbo
update sth. at 2024-11-26 16:15:47
9b0f4a0
import abc
import cv2
import numpy as np
import contextlib
from huggingface_hub import hf_hub_download
class DocLayoutModel(abc.ABC):
@staticmethod
def load_torch():
model = TorchModel.from_pretrained(
repo_id="juliozhao/DocLayout-YOLO-DocStructBench",
filename="doclayout_yolo_docstructbench_imgsz1024.pt",
)
return model
@staticmethod
def load_onnx():
model = OnnxModel.from_pretrained(
repo_id="wybxc/DocLayout-YOLO-DocStructBench-onnx",
filename="doclayout_yolo_docstructbench_imgsz1024.onnx",
)
return model
@staticmethod
def load_available():
with contextlib.suppress(ImportError):
return DocLayoutModel.load_torch()
with contextlib.suppress(ImportError):
return DocLayoutModel.load_onnx()
raise ImportError(
"Please install the `torch` or `onnx` feature to use the DocLayout model."
)
@property
@abc.abstractmethod
def stride(self) -> int:
"""Stride of the model input."""
pass
@abc.abstractmethod
def predict(self, image, imgsz=1024, **kwargs) -> list:
"""
Predict the layout of a document page.
Args:
image: The image of the document page.
imgsz: Resize the image to this size. Must be a multiple of the stride.
**kwargs: Additional arguments.
"""
pass
class TorchModel(DocLayoutModel):
def __init__(self, model_path: str):
try:
import doclayout_yolo
except ImportError:
raise ImportError(
"Please install the `torch` feature to use the Torch model."
)
self.model_path = model_path
self.model = doclayout_yolo.YOLOv10(model_path)
@staticmethod
def from_pretrained(repo_id: str, filename: str):
pth = hf_hub_download(repo_id=repo_id, filename=filename)
return TorchModel(pth)
@property
def stride(self):
return 32
def predict(self, *args, **kwargs):
return self.model.predict(*args, **kwargs)
class YoloResult:
"""Helper class to store detection results from ONNX model."""
def __init__(self, boxes, names):
self.boxes = [YoloBox(data=d) for d in boxes]
self.boxes.sort(key=lambda x: x.conf, reverse=True)
self.names = names
class YoloBox:
"""Helper class to store detection results from ONNX model."""
def __init__(self, data):
self.xyxy = data[:4]
self.conf = data[-2]
self.cls = data[-1]
class OnnxModel(DocLayoutModel):
def __init__(self, model_path: str):
import ast
try:
import onnx
import onnxruntime
except ImportError:
raise ImportError(
"Please install the `onnx` feature to use the ONNX model."
)
self.model_path = model_path
model = onnx.load(model_path)
metadata = {d.key: d.value for d in model.metadata_props}
self._stride = ast.literal_eval(metadata["stride"])
self._names = ast.literal_eval(metadata["names"])
self.model = onnxruntime.InferenceSession(model.SerializeToString())
@staticmethod
def from_pretrained(repo_id: str, filename: str):
pth = hf_hub_download(repo_id=repo_id, filename=filename)
return OnnxModel(pth)
@property
def stride(self):
return self._stride
def resize_and_pad_image(self, image, new_shape):
"""
Resize and pad the image to the specified size, ensuring dimensions are multiples of stride.
Parameters:
- image: Input image
- new_shape: Target size (integer or (height, width) tuple)
- stride: Padding alignment stride, default 32
Returns:
- Processed image
"""
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
h, w = image.shape[:2]
new_h, new_w = new_shape
# Calculate scaling ratio
r = min(new_h / h, new_w / w)
resized_h, resized_w = int(round(h * r)), int(round(w * r))
# Resize image
image = cv2.resize(
image, (resized_w, resized_h), interpolation=cv2.INTER_LINEAR
)
# Calculate padding size and align to stride multiple
pad_w = (new_w - resized_w) % self.stride
pad_h = (new_h - resized_h) % self.stride
top, bottom = pad_h // 2, pad_h - pad_h // 2
left, right = pad_w // 2, pad_w - pad_w // 2
# Add padding
image = cv2.copyMakeBorder(
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
)
return image
def scale_boxes(self, img1_shape, boxes, img0_shape):
"""
Rescales bounding boxes (in the format of xyxy by default) from the shape of the image they were originally
specified in (img1_shape) to the shape of a different image (img0_shape).
Args:
img1_shape (tuple): The shape of the image that the bounding boxes are for,
in the format of (height, width).
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
img0_shape (tuple): the shape of the target image, in the format of (height, width).
Returns:
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
"""
# Calculate scaling ratio
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])
# Calculate padding size
pad_x = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1)
pad_y = round((img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1)
# Remove padding and scale boxes
boxes[..., :4] = (boxes[..., :4] - [pad_x, pad_y, pad_x, pad_y]) / gain
return boxes
def predict(self, image, imgsz=1024, **kwargs):
# Preprocess input image
orig_h, orig_w = image.shape[:2]
pix = self.resize_and_pad_image(image, new_shape=imgsz)
pix = np.transpose(pix, (2, 0, 1)) # CHW
pix = np.expand_dims(pix, axis=0) # BCHW
pix = pix.astype(np.float32) / 255.0 # Normalize to [0, 1]
new_h, new_w = pix.shape[2:]
# Run inference
preds = self.model.run(None, {"images": pix})[0]
# Postprocess predictions
preds = preds[preds[..., 4] > 0.25]
preds[..., :4] = self.scale_boxes(
(new_h, new_w), preds[..., :4], (orig_h, orig_w)
)
return [YoloResult(boxes=preds, names=self._names)]