PDFTranslate / pdf2zh /utils.py
sanbo
update sth. at 2024-11-26 16:15:47
9b0f4a0
"""Miscellaneous Routines."""
import io
import pathlib
import string
import struct
from html import escape
from typing import (
TYPE_CHECKING,
Any,
BinaryIO,
Callable,
Dict,
Generic,
Iterable,
Iterator,
List,
Optional,
Set,
TextIO,
Tuple,
TypeVar,
Union,
cast,
)
from pdf2zh.pdfexceptions import PDFTypeError, PDFValueError
if TYPE_CHECKING:
from pdf2zh.layout import LTComponent
import charset_normalizer # For str encoding detection
# from sys import maxint as INF doesn't work anymore under Python3, but PDF
# still uses 32 bits ints
INF = (1 << 31) - 1
FileOrName = Union[pathlib.PurePath, str, io.IOBase]
AnyIO = Union[TextIO, BinaryIO]
class open_filename:
"""Context manager that allows opening a filename
(str or pathlib.PurePath type is supported) and closes it on exit,
(just like `open`), but does nothing for file-like objects.
"""
def __init__(self, filename: FileOrName, *args: Any, **kwargs: Any) -> None:
if isinstance(filename, pathlib.PurePath):
filename = str(filename)
if isinstance(filename, str):
self.file_handler: AnyIO = open(filename, *args, **kwargs)
self.closing = True
elif isinstance(filename, io.IOBase):
self.file_handler = cast(AnyIO, filename)
self.closing = False
else:
raise PDFTypeError("Unsupported input type: %s" % type(filename))
def __enter__(self) -> AnyIO:
return self.file_handler
def __exit__(self, exc_type: object, exc_val: object, exc_tb: object) -> None:
if self.closing:
self.file_handler.close()
def make_compat_bytes(in_str: str) -> bytes:
"""Converts to bytes, encoding to unicode."""
assert isinstance(in_str, str), str(type(in_str))
return in_str.encode()
def make_compat_str(o: object) -> str:
"""Converts everything to string, if bytes guessing the encoding."""
if isinstance(o, bytes):
enc = charset_normalizer.detect(o)
try:
return o.decode(enc["encoding"])
except UnicodeDecodeError:
return str(o)
else:
return str(o)
def shorten_str(s: str, size: int) -> str:
if size < 7:
return s[:size]
if len(s) > size:
length = (size - 5) // 2
return f"{s[:length]} ... {s[-length:]}"
else:
return s
def compatible_encode_method(
bytesorstring: Union[bytes, str],
encoding: str = "utf-8",
erraction: str = "ignore",
) -> str:
"""When Py2 str.encode is called, it often means bytes.encode in Py3.
This does either.
"""
if isinstance(bytesorstring, str):
return bytesorstring
assert isinstance(bytesorstring, bytes), str(type(bytesorstring))
return bytesorstring.decode(encoding, erraction)
def paeth_predictor(left: int, above: int, upper_left: int) -> int:
# From http://www.libpng.org/pub/png/spec/1.2/PNG-Filters.html
# Initial estimate
p = left + above - upper_left
# Distances to a,b,c
pa = abs(p - left)
pb = abs(p - above)
pc = abs(p - upper_left)
# Return nearest of a,b,c breaking ties in order a,b,c
if pa <= pb and pa <= pc:
return left
elif pb <= pc:
return above
else:
return upper_left
def apply_png_predictor(
pred: int,
colors: int,
columns: int,
bitspercomponent: int,
data: bytes,
) -> bytes:
"""Reverse the effect of the PNG predictor
Documentation: http://www.libpng.org/pub/png/spec/1.2/PNG-Filters.html
"""
if bitspercomponent not in [8, 1]:
msg = "Unsupported `bitspercomponent': %d" % bitspercomponent
raise PDFValueError(msg)
nbytes = colors * columns * bitspercomponent // 8
bpp = colors * bitspercomponent // 8 # number of bytes per complete pixel
buf = []
line_above = list(b"\x00" * columns)
for scanline_i in range(0, len(data), nbytes + 1):
filter_type = data[scanline_i]
line_encoded = data[scanline_i + 1 : scanline_i + 1 + nbytes]
raw = []
if filter_type == 0:
# Filter type 0: None
raw = list(line_encoded)
elif filter_type == 1:
# Filter type 1: Sub
# To reverse the effect of the Sub() filter after decompression,
# output the following value:
# Raw(x) = Sub(x) + Raw(x - bpp)
# (computed mod 256), where Raw() refers to the bytes already
# decoded.
for j, sub_x in enumerate(line_encoded):
if j - bpp < 0:
raw_x_bpp = 0
else:
raw_x_bpp = int(raw[j - bpp])
raw_x = (sub_x + raw_x_bpp) & 255
raw.append(raw_x)
elif filter_type == 2:
# Filter type 2: Up
# To reverse the effect of the Up() filter after decompression,
# output the following value:
# Raw(x) = Up(x) + Prior(x)
# (computed mod 256), where Prior() refers to the decoded bytes of
# the prior scanline.
for up_x, prior_x in zip(line_encoded, line_above):
raw_x = (up_x + prior_x) & 255
raw.append(raw_x)
elif filter_type == 3:
# Filter type 3: Average
# To reverse the effect of the Average() filter after
# decompression, output the following value:
# Raw(x) = Average(x) + floor((Raw(x-bpp)+Prior(x))/2)
# where the result is computed mod 256, but the prediction is
# calculated in the same way as for encoding. Raw() refers to the
# bytes already decoded, and Prior() refers to the decoded bytes of
# the prior scanline.
for j, average_x in enumerate(line_encoded):
if j - bpp < 0:
raw_x_bpp = 0
else:
raw_x_bpp = int(raw[j - bpp])
prior_x = int(line_above[j])
raw_x = (average_x + (raw_x_bpp + prior_x) // 2) & 255
raw.append(raw_x)
elif filter_type == 4:
# Filter type 4: Paeth
# To reverse the effect of the Paeth() filter after decompression,
# output the following value:
# Raw(x) = Paeth(x)
# + PaethPredictor(Raw(x-bpp), Prior(x), Prior(x-bpp))
# (computed mod 256), where Raw() and Prior() refer to bytes
# already decoded. Exactly the same PaethPredictor() function is
# used by both encoder and decoder.
for j, paeth_x in enumerate(line_encoded):
if j - bpp < 0:
raw_x_bpp = 0
prior_x_bpp = 0
else:
raw_x_bpp = int(raw[j - bpp])
prior_x_bpp = int(line_above[j - bpp])
prior_x = int(line_above[j])
paeth = paeth_predictor(raw_x_bpp, prior_x, prior_x_bpp)
raw_x = (paeth_x + paeth) & 255
raw.append(raw_x)
else:
raise PDFValueError("Unsupported predictor value: %d" % filter_type)
buf.extend(raw)
line_above = raw
return bytes(buf)
Point = Tuple[float, float]
Rect = Tuple[float, float, float, float]
Matrix = Tuple[float, float, float, float, float, float]
PathSegment = Union[
Tuple[str], # Literal['h']
Tuple[str, float, float], # Literal['m', 'l']
Tuple[str, float, float, float, float], # Literal['v', 'y']
Tuple[str, float, float, float, float, float, float],
] # Literal['c']
# Matrix operations
MATRIX_IDENTITY: Matrix = (1, 0, 0, 1, 0, 0)
def parse_rect(o: Any) -> Rect:
try:
(x0, y0, x1, y1) = o
return float(x0), float(y0), float(x1), float(y1)
except ValueError:
raise PDFValueError("Could not parse rectangle")
def mult_matrix(m1: Matrix, m0: Matrix) -> Matrix:
(a1, b1, c1, d1, e1, f1) = m1
(a0, b0, c0, d0, e0, f0) = m0
"""Returns the multiplication of two matrices."""
return (
a0 * a1 + c0 * b1,
b0 * a1 + d0 * b1,
a0 * c1 + c0 * d1,
b0 * c1 + d0 * d1,
a0 * e1 + c0 * f1 + e0,
b0 * e1 + d0 * f1 + f0,
)
def translate_matrix(m: Matrix, v: Point) -> Matrix:
"""Translates a matrix by (x, y)."""
(a, b, c, d, e, f) = m
(x, y) = v
return a, b, c, d, x * a + y * c + e, x * b + y * d + f
def apply_matrix_pt(m: Matrix, v: Point) -> Point:
(a, b, c, d, e, f) = m
(x, y) = v
"""Applies a matrix to a point."""
return a * x + c * y + e, b * x + d * y + f
def apply_matrix_norm(m: Matrix, v: Point) -> Point:
"""Equivalent to apply_matrix_pt(M, (p,q)) - apply_matrix_pt(M, (0,0))"""
(a, b, c, d, e, f) = m
(p, q) = v
return a * p + c * q, b * p + d * q
def matrix_scale(m: Matrix) -> float:
(a, b, c, d, e, f) = m
return (a**2 + c**2) ** 0.5
# Utility functions
def isnumber(x: object) -> bool:
return isinstance(x, (int, float))
_T = TypeVar("_T")
def uniq(objs: Iterable[_T]) -> Iterator[_T]:
"""Eliminates duplicated elements."""
done = set()
for obj in objs:
if obj in done:
continue
done.add(obj)
yield obj
def fsplit(pred: Callable[[_T], bool], objs: Iterable[_T]) -> Tuple[List[_T], List[_T]]:
"""Split a list into two classes according to the predicate."""
t = []
f = []
for obj in objs:
if pred(obj):
t.append(obj)
else:
f.append(obj)
return t, f
def drange(v0: float, v1: float, d: int) -> range:
"""Returns a discrete range."""
return range(int(v0) // d, int(v1 + d) // d)
def get_bound(pts: Iterable[Point]) -> Rect:
"""Compute a minimal rectangle that covers all the points."""
limit: Rect = (INF, INF, -INF, -INF)
(x0, y0, x1, y1) = limit
for x, y in pts:
x0 = min(x0, x)
y0 = min(y0, y)
x1 = max(x1, x)
y1 = max(y1, y)
return x0, y0, x1, y1
def pick(
seq: Iterable[_T],
func: Callable[[_T], float],
maxobj: Optional[_T] = None,
) -> Optional[_T]:
"""Picks the object obj where func(obj) has the highest value."""
maxscore = None
for obj in seq:
score = func(obj)
if maxscore is None or maxscore < score:
(maxscore, maxobj) = (score, obj)
return maxobj
def choplist(n: int, seq: Iterable[_T]) -> Iterator[Tuple[_T, ...]]:
"""Groups every n elements of the list."""
r = []
for x in seq:
r.append(x)
if len(r) == n:
yield tuple(r)
r = []
def nunpack(s: bytes, default: int = 0) -> int:
"""Unpacks 1 to 4 or 8 byte integers (big endian)."""
length = len(s)
if not length:
return default
elif length == 1:
return ord(s)
elif length == 2:
return cast(int, struct.unpack(">H", s)[0])
elif length == 3:
return cast(int, struct.unpack(">L", b"\x00" + s)[0])
elif length == 4:
return cast(int, struct.unpack(">L", s)[0])
elif length == 8:
return cast(int, struct.unpack(">Q", s)[0])
else:
raise PDFTypeError("invalid length: %d" % length)
PDFDocEncoding = "".join(
chr(x)
for x in (
0x0000,
0x0001,
0x0002,
0x0003,
0x0004,
0x0005,
0x0006,
0x0007,
0x0008,
0x0009,
0x000A,
0x000B,
0x000C,
0x000D,
0x000E,
0x000F,
0x0010,
0x0011,
0x0012,
0x0013,
0x0014,
0x0015,
0x0017,
0x0017,
0x02D8,
0x02C7,
0x02C6,
0x02D9,
0x02DD,
0x02DB,
0x02DA,
0x02DC,
0x0020,
0x0021,
0x0022,
0x0023,
0x0024,
0x0025,
0x0026,
0x0027,
0x0028,
0x0029,
0x002A,
0x002B,
0x002C,
0x002D,
0x002E,
0x002F,
0x0030,
0x0031,
0x0032,
0x0033,
0x0034,
0x0035,
0x0036,
0x0037,
0x0038,
0x0039,
0x003A,
0x003B,
0x003C,
0x003D,
0x003E,
0x003F,
0x0040,
0x0041,
0x0042,
0x0043,
0x0044,
0x0045,
0x0046,
0x0047,
0x0048,
0x0049,
0x004A,
0x004B,
0x004C,
0x004D,
0x004E,
0x004F,
0x0050,
0x0051,
0x0052,
0x0053,
0x0054,
0x0055,
0x0056,
0x0057,
0x0058,
0x0059,
0x005A,
0x005B,
0x005C,
0x005D,
0x005E,
0x005F,
0x0060,
0x0061,
0x0062,
0x0063,
0x0064,
0x0065,
0x0066,
0x0067,
0x0068,
0x0069,
0x006A,
0x006B,
0x006C,
0x006D,
0x006E,
0x006F,
0x0070,
0x0071,
0x0072,
0x0073,
0x0074,
0x0075,
0x0076,
0x0077,
0x0078,
0x0079,
0x007A,
0x007B,
0x007C,
0x007D,
0x007E,
0x0000,
0x2022,
0x2020,
0x2021,
0x2026,
0x2014,
0x2013,
0x0192,
0x2044,
0x2039,
0x203A,
0x2212,
0x2030,
0x201E,
0x201C,
0x201D,
0x2018,
0x2019,
0x201A,
0x2122,
0xFB01,
0xFB02,
0x0141,
0x0152,
0x0160,
0x0178,
0x017D,
0x0131,
0x0142,
0x0153,
0x0161,
0x017E,
0x0000,
0x20AC,
0x00A1,
0x00A2,
0x00A3,
0x00A4,
0x00A5,
0x00A6,
0x00A7,
0x00A8,
0x00A9,
0x00AA,
0x00AB,
0x00AC,
0x0000,
0x00AE,
0x00AF,
0x00B0,
0x00B1,
0x00B2,
0x00B3,
0x00B4,
0x00B5,
0x00B6,
0x00B7,
0x00B8,
0x00B9,
0x00BA,
0x00BB,
0x00BC,
0x00BD,
0x00BE,
0x00BF,
0x00C0,
0x00C1,
0x00C2,
0x00C3,
0x00C4,
0x00C5,
0x00C6,
0x00C7,
0x00C8,
0x00C9,
0x00CA,
0x00CB,
0x00CC,
0x00CD,
0x00CE,
0x00CF,
0x00D0,
0x00D1,
0x00D2,
0x00D3,
0x00D4,
0x00D5,
0x00D6,
0x00D7,
0x00D8,
0x00D9,
0x00DA,
0x00DB,
0x00DC,
0x00DD,
0x00DE,
0x00DF,
0x00E0,
0x00E1,
0x00E2,
0x00E3,
0x00E4,
0x00E5,
0x00E6,
0x00E7,
0x00E8,
0x00E9,
0x00EA,
0x00EB,
0x00EC,
0x00ED,
0x00EE,
0x00EF,
0x00F0,
0x00F1,
0x00F2,
0x00F3,
0x00F4,
0x00F5,
0x00F6,
0x00F7,
0x00F8,
0x00F9,
0x00FA,
0x00FB,
0x00FC,
0x00FD,
0x00FE,
0x00FF,
)
)
def decode_text(s: bytes) -> str:
"""Decodes a PDFDocEncoding string to Unicode."""
if s.startswith(b"\xfe\xff"):
return str(s[2:], "utf-16be", "ignore")
else:
return "".join(PDFDocEncoding[c] for c in s)
def enc(x: str) -> str:
"""Encodes a string for SGML/XML/HTML"""
if isinstance(x, bytes):
return ""
return escape(x)
def bbox2str(bbox: Rect) -> str:
(x0, y0, x1, y1) = bbox
return f"{x0:.3f},{y0:.3f},{x1:.3f},{y1:.3f}"
def matrix2str(m: Matrix) -> str:
(a, b, c, d, e, f) = m
return f"[{a:.2f},{b:.2f},{c:.2f},{d:.2f}, ({e:.2f},{f:.2f})]"
def vecBetweenBoxes(obj1: "LTComponent", obj2: "LTComponent") -> Point:
"""A distance function between two TextBoxes.
Consider the bounding rectangle for obj1 and obj2.
Return vector between 2 boxes boundaries if they don't overlap, otherwise
returns vector betweeen boxes centers
+------+..........+ (x1, y1)
| obj1 | :
+------+www+------+
: | obj2 |
(x0, y0) +..........+------+
"""
(x0, y0) = (min(obj1.x0, obj2.x0), min(obj1.y0, obj2.y0))
(x1, y1) = (max(obj1.x1, obj2.x1), max(obj1.y1, obj2.y1))
(ow, oh) = (x1 - x0, y1 - y0)
(iw, ih) = (ow - obj1.width - obj2.width, oh - obj1.height - obj2.height)
if iw < 0 and ih < 0:
# if one is inside another we compute euclidean distance
(xc1, yc1) = ((obj1.x0 + obj1.x1) / 2, (obj1.y0 + obj1.y1) / 2)
(xc2, yc2) = ((obj2.x0 + obj2.x1) / 2, (obj2.y0 + obj2.y1) / 2)
return xc1 - xc2, yc1 - yc2
else:
return max(0, iw), max(0, ih)
LTComponentT = TypeVar("LTComponentT", bound="LTComponent")
class Plane(Generic[LTComponentT]):
"""A set-like data structure for objects placed on a plane.
Can efficiently find objects in a certain rectangular area.
It maintains two parallel lists of objects, each of
which is sorted by its x or y coordinate.
"""
def __init__(self, bbox: Rect, gridsize: int = 50) -> None:
self._seq: List[LTComponentT] = [] # preserve the object order.
self._objs: Set[LTComponentT] = set()
self._grid: Dict[Point, List[LTComponentT]] = {}
self.gridsize = gridsize
(self.x0, self.y0, self.x1, self.y1) = bbox
def __repr__(self) -> str:
return "<Plane objs=%r>" % list(self)
def __iter__(self) -> Iterator[LTComponentT]:
return (obj for obj in self._seq if obj in self._objs)
def __len__(self) -> int:
return len(self._objs)
def __contains__(self, obj: object) -> bool:
return obj in self._objs
def _getrange(self, bbox: Rect) -> Iterator[Point]:
(x0, y0, x1, y1) = bbox
if x1 <= self.x0 or self.x1 <= x0 or y1 <= self.y0 or self.y1 <= y0:
return
x0 = max(self.x0, x0)
y0 = max(self.y0, y0)
x1 = min(self.x1, x1)
y1 = min(self.y1, y1)
for grid_y in drange(y0, y1, self.gridsize):
for grid_x in drange(x0, x1, self.gridsize):
yield (grid_x, grid_y)
def extend(self, objs: Iterable[LTComponentT]) -> None:
for obj in objs:
self.add(obj)
def add(self, obj: LTComponentT) -> None:
"""Place an object."""
for k in self._getrange((obj.x0, obj.y0, obj.x1, obj.y1)):
if k not in self._grid:
r: List[LTComponentT] = []
self._grid[k] = r
else:
r = self._grid[k]
r.append(obj)
self._seq.append(obj)
self._objs.add(obj)
def remove(self, obj: LTComponentT) -> None:
"""Displace an object."""
for k in self._getrange((obj.x0, obj.y0, obj.x1, obj.y1)):
try:
self._grid[k].remove(obj)
except (KeyError, ValueError):
pass
self._objs.remove(obj)
def find(self, bbox: Rect) -> Iterator[LTComponentT]:
"""Finds objects that are in a certain area."""
(x0, y0, x1, y1) = bbox
done = set()
for k in self._getrange(bbox):
if k not in self._grid:
continue
for obj in self._grid[k]:
if obj in done:
continue
done.add(obj)
if obj.x1 <= x0 or x1 <= obj.x0 or obj.y1 <= y0 or y1 <= obj.y0:
continue
yield obj
ROMAN_ONES = ["i", "x", "c", "m"]
ROMAN_FIVES = ["v", "l", "d"]
def format_int_roman(value: int) -> str:
"""Format a number as lowercase Roman numerals."""
assert 0 < value < 4000
result: List[str] = []
index = 0
while value != 0:
value, remainder = divmod(value, 10)
if remainder == 9:
result.insert(0, ROMAN_ONES[index])
result.insert(1, ROMAN_ONES[index + 1])
elif remainder == 4:
result.insert(0, ROMAN_ONES[index])
result.insert(1, ROMAN_FIVES[index])
else:
over_five = remainder >= 5
if over_five:
result.insert(0, ROMAN_FIVES[index])
remainder -= 5
result.insert(1 if over_five else 0, ROMAN_ONES[index] * remainder)
index += 1
return "".join(result)
def format_int_alpha(value: int) -> str:
"""Format a number as lowercase letters a-z, aa-zz, etc."""
assert value > 0
result: List[str] = []
while value != 0:
value, remainder = divmod(value - 1, len(string.ascii_lowercase))
result.append(string.ascii_lowercase[remainder])
result.reverse()
return "".join(result)
def get_device():
"""Get the device to use for computation."""
try:
import torch
if torch.cuda.is_available():
return "cuda:0"
except ImportError:
pass
return "cpu"