Spaces:
Runtime error
Runtime error
Update space
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from dotenv import load_dotenv
|
4 |
-
from
|
5 |
from langchain_chroma import Chroma
|
6 |
from langchain_community.document_loaders import DirectoryLoader, TextLoader
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
-
from langchain_core.runnables import RunnablePassthrough
|
9 |
from langchain_core.output_parsers import StrOutputParser
|
10 |
from langchain import hub
|
11 |
from huggingface_hub import snapshot_download
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from dotenv import load_dotenv
|
4 |
+
from models import ZhipuAIEmbeddings, ZhipuLLM
|
5 |
from langchain_chroma import Chroma
|
6 |
from langchain_community.document_loaders import DirectoryLoader, TextLoader
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_core.runnables import RunnablePassthrough
|
9 |
from langchain_core.output_parsers import StrOutputParser
|
10 |
from langchain import hub
|
11 |
from huggingface_hub import snapshot_download
|
models.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.language_models.llms import LLM
|
2 |
+
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
3 |
+
from langchain.embeddings.base import Embeddings
|
4 |
+
from typing import Any, Dict, List, Optional
|
5 |
+
import os
|
6 |
+
from zhipuai import ZhipuAI
|
7 |
+
from langchain.pydantic_v1 import BaseModel, root_validator
|
8 |
+
|
9 |
+
|
10 |
+
class ZhipuLLM(LLM):
|
11 |
+
"""A custom chat model for ZhipuAI."""
|
12 |
+
|
13 |
+
client: Any = None
|
14 |
+
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
print("Initializing model...")
|
18 |
+
self.client = ZhipuAI(api_key=os.environ.get("ZHIPUAI_API_KEY"))
|
19 |
+
print("Model initialization complete")
|
20 |
+
|
21 |
+
def _call(
|
22 |
+
self,
|
23 |
+
prompt: str,
|
24 |
+
stop: Optional[List[str]] = None,
|
25 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
26 |
+
**kwargs: Any,
|
27 |
+
) -> str:
|
28 |
+
"""Run the LLM on the given input."""
|
29 |
+
|
30 |
+
response = self.client.chat.completions.create(
|
31 |
+
model="glm-4-flash",
|
32 |
+
messages=[
|
33 |
+
{"role": "user", "content": prompt},
|
34 |
+
],
|
35 |
+
)
|
36 |
+
return response.choices[0].message.content
|
37 |
+
|
38 |
+
@property
|
39 |
+
def _identifying_params(self) -> Dict[str, Any]:
|
40 |
+
"""Return a dictionary of identifying parameters."""
|
41 |
+
return {"model_name": "ZhipuAI"}
|
42 |
+
|
43 |
+
@property
|
44 |
+
def _llm_type(self) -> str:
|
45 |
+
"""Get the type of language model used by this chat model."""
|
46 |
+
return "ZhipuAI"
|
47 |
+
|
48 |
+
|
49 |
+
class ZhipuAIEmbeddings(BaseModel, Embeddings):
|
50 |
+
"""`Zhipuai Embeddings` embedding models."""
|
51 |
+
|
52 |
+
zhipuai_api_key: Optional[str] = None
|
53 |
+
|
54 |
+
@root_validator()
|
55 |
+
def validate_environment(cls, values: Dict) -> Dict:
|
56 |
+
values["zhupuai_api_key"] = values.get("zhupuai_api_key") or os.getenv(
|
57 |
+
"ZHIPUAI_API_KEY"
|
58 |
+
)
|
59 |
+
try:
|
60 |
+
import zhipuai
|
61 |
+
|
62 |
+
zhipuai.api_key = values["zhupuai_api_key"]
|
63 |
+
values["client"] = zhipuai.ZhipuAI()
|
64 |
+
except ImportError:
|
65 |
+
raise ValueError(
|
66 |
+
"Zhipuai package not found, please install it with `pip install zhipuai`"
|
67 |
+
)
|
68 |
+
return values
|
69 |
+
|
70 |
+
def _embed(self, texts: str) -> List[float]:
|
71 |
+
try:
|
72 |
+
resp = self.client.embeddings.create(
|
73 |
+
model="embedding-3",
|
74 |
+
input=texts,
|
75 |
+
)
|
76 |
+
except Exception as e:
|
77 |
+
raise ValueError(f"Error raised by inference endpoint: {e}")
|
78 |
+
embeddings = resp.data[0].embedding
|
79 |
+
return embeddings
|
80 |
+
|
81 |
+
def embed_query(self, text: str) -> List[float]:
|
82 |
+
resp = self.embed_documents([text])
|
83 |
+
return resp[0]
|
84 |
+
|
85 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
86 |
+
return [self._embed(text) for text in texts]
|