Spaces:
Running
Running
File size: 6,009 Bytes
d3e0df2 1f63fcf d3e0df2 ee44eab 1f63fcf ee44eab 1f63fcf ee44eab d3e0df2 ee44eab 87505e7 ee44eab af74e64 ee44eab d3e0df2 ee44eab 1f63fcf ee44eab af74e64 ee44eab af74e64 ee44eab e91d345 ee44eab 1f63fcf ee44eab 1f63fcf ee44eab 1f63fcf ee44eab 1f63fcf d3e0df2 1f63fcf ee44eab 1f63fcf ee44eab 1f63fcf ee44eab 1f63fcf ee44eab 1f63fcf ee44eab 1f63fcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import base64
from functools import partial
from multiprocessing import Pool
import gradio as gr
import numpy as np
import requests
from processing_whisper import WhisperPrePostProcessor
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read
title = "Whisper JAX: The Fastest Whisper API ⚡️"
description = "Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v2) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over **12x** faster, making it the fastest Whisper API available."
API_URL = "https://whisper-jax.ngrok.io/generate/"
article = "Whisper large-v2 model by OpenAI. Backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX code and Gradio demo by 🤗 Hugging Face."
language_names = sorted(TO_LANGUAGE_CODE.keys())
CHUNK_LENGTH_S = 30
BATCH_SIZE = 16
NUM_PROC = 16
def query(payload):
response = requests.post(API_URL, json=payload)
return response.json(), response.status_code
def inference(inputs, language=None, task=None, return_timestamps=False):
payload = {"inputs": inputs, "task": task, "return_timestamps": return_timestamps}
# langauge can come as an empty string from the Gradio `None` default, so we handle it separately
if language:
payload["language"] = language
data, status_code = query(payload)
if status_code == 200:
text = data["text"]
else:
text = data["detail"]
if return_timestamps:
timestamps = data["chunks"]
else:
timestamps = None
return text, timestamps
def chunked_query(payload):
response = requests.post("https://whisper-jax.ngrok.io/generate_from_features", json=payload)
return response.json()
def forward(batch, task=None, return_timestamps=False):
feature_shape = batch["input_features"].shape
batch["input_features"] = base64.b64encode(batch["input_features"].tobytes()).decode()
outputs = chunked_query(
{"batch": batch, "task": task, "return_timestamps": return_timestamps, "feature_shape": feature_shape}
)
outputs["tokens"] = np.asarray(outputs["tokens"])
return outputs
if __name__ == "__main__":
processor = WhisperPrePostProcessor.from_pretrained("openai/whisper-large-v2")
pool = Pool(NUM_PROC)
def transcribe_chunked_audio(microphone, file_upload, task, return_timestamps):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
inputs = microphone if microphone is not None else file_upload
with open(inputs, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate}
dataloader = processor.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
model_outputs = pool.map(partial(forward, task=task, return_timestamps=return_timestamps), dataloader)
post_processed = processor.postprocess(model_outputs, return_timestamps=return_timestamps)
timestamps = post_processed.get("chunks")
return warn_output + post_processed["text"], timestamps
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def transcribe_youtube(yt_url, task, return_timestamps):
html_embed_str = _return_yt_html_embed(yt_url)
text, timestamps = inference(inputs=yt_url, task=task, return_timestamps=return_timestamps)
return html_embed_str, text, timestamps
audio_chunked = gr.Interface(
fn=transcribe_chunked_audio,
inputs=[
gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
gr.inputs.Audio(source="upload", optional=True, type="filepath"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(default=False, label="Return timestamps"),
],
outputs=[
gr.outputs.Textbox(label="Transcription"),
gr.outputs.Textbox(label="Timestamps"),
],
allow_flagging="never",
title=title,
description=description,
article=article,
)
youtube = gr.Interface(
fn=transcribe_youtube,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(default=False, label="Return timestamps"),
],
outputs=[
gr.outputs.HTML(label="Video"),
gr.outputs.Textbox(label="Transcription"),
gr.outputs.Textbox(label="Timestamps"),
],
allow_flagging="never",
title=title,
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]],
cache_examples=False,
description=description,
article=article,
)
demo = gr.Blocks()
with demo:
gr.TabbedInterface(
[audio_chunked, youtube], ["Transcribe Audio", "Transcribe YouTube"]
)
demo.queue()
demo.launch()
|